

Tracking with Hashing

ATRAPP team: Jessica Levêque Sabine Elles Florencia Castillo

First year PhD Seminar

23th June 2023

06/23/23

Jeremy Couthures

- **1. Thesis context: ITk building**
- **2. ATLAS Qualification Task**

3. Thesis work:

- Baseline
- Method
- Results
- Where are we going?

1. Thesis context: ATLAS detector for HL-LHC

High Luminosity-LHC (HL-LHC):

- Expected in 2029
- Increase of luminosity
 - Luminosity: ~ number of collisions per seconds

Inner Detector Overview

ITk Pixel Detector Overview

LAPP is building components of the Outer Barrel (OB)

LAPP ITk Pixel Detector Overview

- LAPP is producing 75% of the OB Types 0 (5000 pigtails, 400 PP0 boards) and will be integrating 25% of the local supports (with LPSC and CPPM)
 - \rightarrow Qualification Task on Production database for Types 0 (pigtails and PP0)
 - \rightarrow In 2024, participation to the electrical testing of modules at CERN or LAPP
- Types 0: Components directly on the detector
- Pigtails: Power supply, monitoring of the cell and transmit data from the module cell
- Patch Panel 0 (PP0): Distribute power supply and aggregate data

Pictures taken from: https://lapp.in2p3.fr/spip.php?article3307

Inner Tracker (ITk) for HL-LHC

ATLAS CPU previsions: need to improve *tracking* performance significantly

Inner Tracker (ITk) for HL-LHC: in short

Tracking:

2. ATLAS Qualification Task: Production Database

• ATLAS Qualification Task:

- 1 year, 6 months of work
- Allows to publish as ATLAS member

ATLAS Production Database

- Create components, store quality control data, track shipping, API

• Qualification Task:

- Creation of a dedicated "LAPP Types 0 Web app" to improve data registration in the database, robustness and scalability (*5000 pigtails*)
- Help other laboratories: make the tool available for all the laboratories involved in Type 0 qualification

ATLAS Qualification Task: Types 0 web app

Pigtails production flow

PP0 production flow

10

Web app link: https://itk-web-apps-pigtails.app.cern.ch/

ATLAS Qualification Task: Types 0 web app example

Pigtail Batch Reception C Unbent Pigtalls LAPP D 0 Pigtails P---LAPP Manufacturer

 </l 😁 👩 Pigtail Panels Bar Becention Shipment to cells LUFF C Pigtails production flow Example: Registering 20 pigtails

ATLAS PDB interface x20							
-			-	-			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			=			
2 5 6 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8							

Seception before cabling

toggle debug for details	
Refresh	
Just testing ③ Reception date:	
2023/06/23	
opcost ment.	
QC operator name:	
Hamidity Indicator (14):	
•	

Create a batch of panels

PANEL_PG_INCLINED_BACK			,
 Batch already exist 			
Production version			
Prototype			
Kanufacturer of the panels			
CERN			
Batch serial number			
10	Dance Dather in control	-	
18 Ratch name: Piaels_OR_Ratch_pigtail_CERN1	From Uniter to apply	-	
10 Batch name: Piaels_08_Batch_pigtail_CERN1 Number of panels to create in the batch	Franci Uniter in apply	-	•
20 Batch naene: Piselu_08_Batch_pigtail_CERN_1 Number of panels to create in the batch 2	From Enter in apply	-	•
24 Bach name: Pinks, OB_Batch_pigtal_CTRN_3 Number of panoh to create in the batch 2 Number of pigtals per panof.	Proven Erster in: apply	-	•
14 Bach name Flork, 08, Back, pigtal, CERN, -3 Number of parallel to control to feature 2 Number of pigtals per panel 28	Para Inter to apply	-	

11

Web app link: https://itk-web-apps-pigtails.app.cern.ch/

4. ATLAS Tracking

Image made by Noemi Calace

ATLAS Tracking Focus on Seeding

- What do we hope to improve?
 - Seeds' efficiency: reconstruct at least one seed per track
 - Seeds' purity (fake rate): reconstruct only tracks' seeds
 - Seeds' redundancy (duplication rate): reconstruct just enough seeds per track

13

How? Group similar Space Points? Might also improve timing?
 06/23/23

Default Seeding Algorithm description

1. Seed Finder

 Check if the triplet forms a nearly straight line in the (r,z) plane

2. Seed Filter

06/23/23

- MaxSeedPerSpM cut limits the number of seeds to speed up the tracking
- Possible improvement:
 - MaxSeedPerSpM: Non physical cut
- Can we remove it?

outer laver

Baseline: Setup

15

Generic detector (default detector, ideal detector without material)

Softwares: Pythia8 (simulation), FATRAS (propagation)

But not using Geant4: No secondary particles (particles created from the interaction with the detector)

Evaluation

Truth track

Evaluate on tracks:

- 1. Efficiency: Reconstruct as much "truth" tracks as possible
- 2. Fake rate: Reconstruct as low "fake" tracks as possible
- 3. Duplication rate: Avoid to duplicate tracks
- 4. Running time: Going as fast as possible

ACTS performance: Timing/event

ACTS performance: Physics

Same in central region, Better in forward region Worst in central region, Same in forward region

Worst everywhere, Even worse in forward region

18

MaxSeedPerSpM cut decreases the performance in forward region But improves in central region

 Without the cut: improve performance but timing is crucial

- Goal: Improve performance with same timing
 - Keep the cut but try to bypass it

A new method: Machine Learning/Hashing in the Seeding

Hashing:

- 1. Group similar space points into buckets
- 2. Do the seeding on each bucket

Algorithm used:

06/23/23

Approximate Nearest Neighbors Oh Yeah (<u>Annoy</u>) → Used by Spotify

- Machine Learning algorithm type:
 - k Nearest Neighbors (unsupervised)
 - Random based
- Constraint: Starting from layer 0
- Parameter: Number of Neighbors (bucket size)
- Use the distance between the points
 → need to define a (relevant) metric

Space separation

Look for neighbors in the closest regions

_ 20

06/23/23

Approaches

- Seeding parallelization
- Hashing groups space points into buckets
- Hashing reduces the number of space points at a time (focus on relevant space points)
 → less seeds per bucket

Metric and bucket size

Hashing and overlap

Overlap of buckets Hashing introduces overlaps: The same seed can be reconstructed in several buckets (14 times in average) ☆Layer 0 SP Need some overlap to bypass the cut _ \circ SP Timing/ Bucket $\mu = 150$ event --Projection (ms) Seed -Track Without Hashing made 4491 Hashing timing x2 With 7909 Hashing

New idea: Group buckets → less overlap

•

Super buckets and binning

Hashing performance: Timing and efficiency

Running time ~ x2

Improvement for small number of bins

25

Slower but better

Hashing performance: Efficiency (detailed)

Hashing φ bins: Timing and efficiency

Not as good but as fast

Hashing φ bins: Efficiency (detailed)

Drop of efficiency in the barrel

Better efficiency in the endcaps

Better in forward region

Overlap in buckets

Overlap in buckets $\langle \mu \rangle = 50 \Delta \phi$ metric

Less overlaps between buckets with ϕ binning

06/23/23

Overlap in buckets $<\mu>$ = 50 $\Delta\phi$ metric

Where are we going?

Current state:

- Comparable performance with the baseline (slight improvement in the forward region!)
- + Trade off between timing and performance (Z binning vs φ binning)
- Not better timing than baseline for now

Next:

- Full sim with Geant4 (secondaries), ITk, metric learning, binning in (z, ϕ) , changing bucket size with detector region, Cluster shape?
- Summer School: HEP and ML. Link
- September: Quark/Gluon Tagging with ML

Annoy training

Space separation

Takes two

iteratively

Corresponding binary tree

Annoy query

Merge neighbor subspaces

Union of trees' subspace

 Annoy tuning parameters: number of neighbors, number of trees, metric used, features used, number of subspace to look at

Quark/Gluon tagging: Physics motivation 1

Vector Boson Scattering: Quartic Gauge coupling measurement

SIGNAL: Electroweak process Background: QCD Process Forward quark jets randomly distributed gluon jets

Quark/Gluon tagging: Physics motivation 2

Higgs Boson production: separate cross-section measurements in various modes

QCD Process: randomly distributed gluons jets

VBF process: forward quark jets

Quark/Gluon tagging: ATLAS forward region@HL-LHC

Nouveau détecteur ITk + **HGTD**: -640 mm

Formations

- Doctoral School (UGA):
 - Requires 120 hours: 1/3 Scientific, 1/3 Professional, 1/3 Transversal
- Professional:
 - "S'ADAPTER A SON ENVIRONNEMENT DE TRAVAIL" (10 hours)
- Scientific:
 - Workshops: ATLAS ML, ITk Tracking, ATLAS Induction Day and Software Tutorial (44 hours)
- Transversal:
 - Opened Science and HAL (4 hours)
 - "JOURNEE DE RENTREE DES DOCTORANTS 2022" (10 hours)
 - Planned: Mooc on ethics (15 hours)
- BONUS: Summer School@ MITP (HEP and ML). Link

ACTS performance: Physics

06/23/23

20

Seed finder configuration

SeedfinderConfigArg = SeedfinderConfigArg(r=(None, 200 * u.mm), # rMin=default, 33mm deltaR = (1 * u.mm, 60 * u.mm),collisionRegion = (-250 * u.mm, 250 * u.mm),z=(-2000 * u.mm, 2000 * u.mm), maxSeedsPerSpM=1, sigmaScattering=5, radLengthPerSeed=0.1, minPt=500 * u.MeV, bFieldInZ=1.99724 * u.T, impactMax=3 * u.mm, cotThetaMax=cotThetaMax # =1/tan(2×atan(e^(-eta)))

MaxSeedsPerSpM cut

• Purpose:

- Reduce the number of seeds to expand to speedup the track finding
- Idea:
 - Only keep at most MaxSeedsPerSpM+1 seeds sharing the same middle space point

Implementation:

- Uses a score to compare the seeds
- The score is related to how close the impact parameter is to 0
- Benefit:
 - speedup and less memory used
- Consequence:
 - Loss of efficiency

MaxSeedsPerSpM cut vs Hashing

Hashing get through the cut

41

Pile-up events

Annoy random seed systematic error

1000 events in each try

06/23/23

BucketSize: 100 Mu: 50

$\Delta \phi$ is better

MaxSeedsPerSpM and ΔR metric

On 1 event:

Filtered Middle Space points are on the maxSeedsPerSpM bin

Some of the "Buckets shared Middle Space points" are on the bins after the maxSeedsPerSpM bin

Differences in the bins before maxSeedsPerSpM correspond to lost seeds

> Default nSeeds: 4208 Δφ nSeeds: 6053 ΔR nSeeds: 5300

Running time no cut

45

Phi bins: Timing

Phi bins: Tracking efficiency

Phi bins: Tracking efficiency

06/23/23

48

Superbucket binning in Z position

Superbucket binning in Phi position

Combinatorial problem

Combinatorial Kalman Filter:

- Several possibilities of expanding the seeds at each layer → need to test them all
- Number of combinations increases exponentially with the number of layers

– Less seeds \rightarrow less tracks \rightarrow less bad quality and duplicated tracks

How to get less seeds?

- \rightarrow Remove the bad ones!
- How?

- Current: Filter the seeds + detailed optimisation
- My work: Build the seeds differently

