DRD @ LPNHE

Rémi Cornat 28/06/2023

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

https://aidainnova.web.cern.ch/european-roadmap-detector-rd https://cds.cern.ch/record/2784893/

2040-

2045

> 2045

2030-

2035

< 2030

2035-

2040

Highly granular calorimetry

Towards O(10⁸) channels detector

A mix of technologies qualified with prototypes and achieving 5000 "calorimeter grade"

"Particle Flow" analysis + ToF : 5D calo (x,y,z,E,tof)

Silicon-Tungsten ECAL @CALICE

Si-W collaboration @CALICE

1024 channels module

Front-end board features 16 SKIROC2 ASICS Each channel is individually shielded

The 18cm x 18cm wide board is fully instrumented with minimal dead space (100 µm at the edges of the sensor)

Experimental data

S/N better than the target (10), non uniformity understood (pixel-pcb capacitance) EMI (chip 2 and 4 close to digital lines) and PSRR can be optimized (multi-trigger events)

Toward a full length module : R&D

up to 2m long detector SLAB, most of signals in bus

Issue 1 : clock distribution (5 & 50 MHz)

Issue 2 : Power distribution

Issue 3 : Integration of services (cooling, according to experiment)

Issue 4 : Mechanical integration

And optimization of geometry wrt. Physics : pixel density, dead area, layers...

large C-W structure exists

Application to other projects

WAGASCI detector for T2K experiment

Scintillator + MPPC based detector, both water and plastic "absorber". Can keep same concept changing chip from SKIROC to SPIROC : same DAQ, similar FE.

Upgrade of the CMS ECAL end-caps

Completely different electronics but similar sensors (large PIN diodes matrix) & very similar mechanical structure build on carbon fiber composite

An ECAL for ILC, CEPC, FCC... may also be based on similar concepts

DRD6 proposal IN2P3 (IJClab, LLR, OMEGA) + KEK + Kyushu + IFIC

Adaptation from CALICE to FCC

- Continuous powering + cooling
- Optimized granularity
- Power efficient electronics
- REAL mechanical structure
- ToF O(10ps)

Proposal schedule allowing to compete for CEPC

Optional fully digital calorimeter (no more E measurement in cells)

M/D	Description	Date
M2.1a	Give the 1 st specifications for the electronics and dimensioning of an SiW-ECAL near continuous collider (2024)	2024-01
D2.1a	Full performances studies for Physics channels	2025-01
M2.1c	Design of active cooling prototype	2024-07
D2.1c	Report on active cooling	2025-07
D2.1	EoI for the FCC	2025-09
M2.3	Design and specifications of the electronics for a timing layer based on LGADs (2025)	2025
D2.2	Blueprint for a pilote module following the specifications of a Higgs factory (2025)	2025
M2.4a	Construct a homogeneous prototype of 1 Tower 15 single-ASU layers	2024-03
D2.4a	Publish the performance in beam and release the G4 sample of the 1T 15 layer prototype	2025
M2.4b	Construct the prototype of 2 Towers. 7–12 layers	2024-09
M2.4b	Use the prototype in one or several fixed target experiments (2025)	2025-12

	DRD																																										
		(20	24	ŀ									2	02	28																								2()3	7	
SiW-ECAL	Ressources		Q1 Q	19 2 Q3	Q4 Q	T1 1 Q2 Q	8 03 Q4	1 Q1	T 1 Q2 Q	7 23 Q4	Q1	71 Q2 Q	6 3 Q4	4 Q1	Tr Q2	-15 Q3 Q4	1 Q1	71 Q2	14 Q3 Q4	Q1	Q2 Q	13 23 Q4	4 Q1	Т Q2	12 Q3	24 Q	1 Q2	-11 Q3	Q4 (Q1 Q	2 Q3	Q4	Q1	Q2 (23 Q	4 Q1	Q2 (8 Q3 Q	4 Q1	Q2	-7 Q3 (Q4	
17 p·m	Phys (ø)		-	+	+		+	\square		+				\top	\square	0,3 0,3	0,3	0	0,3 0,3		(0,3 0,7	7		0,7 0	,3	\top	0,3	0,3 (0,3 0,	3 0,3	0,3	0,3	0,3 0	(3 0/	3 0,3	0,3 /	0,3 0/	3	\square	\square	+	
116 p.m	LLRe LICe IFIC O		10 1/	0 10	10 1	0 1 0 2	0 20	3.0	204	0 2 0	2.0	101	0 10	0 07	07	10 13	0.7	170	3 0 3	0.3	071	10 10	0 0 3	10	- 0	17	07		0.3	-	-		\vdash	0.3	+	+	0.3	+	+	+	\vdash	+	
40 p.m					-,,	,					-1-	1	0 10	0.03	0.3	07 03	0.3		3 0 3	0.3	07 1	10 13	3 0 7	0.7	101	0.0	7 0 3	0.3	0.3 (0.3	+	\square	H		+	+		+	+	┢╋	\vdash	+	
40 pm	Certi, idem		+	+	+	++	+	+	+	+				0,0	0,0	0,7 0,0			2,0 0,0	0,0	0,7	10	0,7	0,7	0.0		1 0,0	0,0	0,0	0,0	+	\square	\vdash	+	+	+	\vdash	+	+	┿┩	⊢	+	
19 p·m	Others	ш	+	+	+	++	+	+	-+	+-		1,0 1,	,0	0,3	0,3	0,3 0,3	0,3	-	1,3	0,3	0,3 0	1,3	0,3	0,3	0,3 0	1,3	+			+	+-		\vdash	+	╇	+	\vdash	+	+	+	\vdash	+	
6	Milestones		\perp			\square	1			1				1					1							1						1	\square	\perp	⊥	\perp	\square	1		\square	Ц	\perp	
0 p·m	Contrats																																										
2 845 k€	IN2P3 Funds		1	100		120			140			10			38	80		30			196	0		60)			45						60			60	1	Т			T	
								-1	SIC	v1	-1	SIC	12			1# AS	i l										Т						ГТ		Т	+	\square	\top	+		\square	+	
								74	-		Γ	_	-		1		-																			T					\Box		
Pilote Module (1MCh) for HF		Ш	4	4 1		4	-		- ÷.,					5		$ \rightarrow $		-				_	1	i						. i .					æ			-	Þ.			i.e.m	
Slabs			4	FE	+	¥ –		A	SIC.			ASU	<u> </u>			-	S.A	8_		¥4		T	owe	<u> </u>	_	Ξ¥.	+	- <u>N</u>	lod	ule	+-		- 1	pro	a _	╨⊢	\vdash	+	+	100	uct	ION	
ASICs			┢╋┷				-			-		\rightarrow	+					-				_	-		-		-			+	+-		_ S1	tagi	ng	╨─	⊢	+	┿╋	+	⊢	+	
ASIC Broduction (16.000)	1ega 1ega (2x100kf+1000kf)	╉		0		100			100				+		200						1000	-	-		-	-				+	+	\vdash	┢┼┥	+	+	╢	\vdash	+	┿╋	┢╋	⊢	+	
ASIC Testing (Robot)		╉	H	4		20	-	+	10	-		-	+	+		50		-	-	1-	1000						+			+	+	\vdash	┢┼┥	+	+	╢─	\vdash	+	┿╋	╋	⊢	+	
PCB	iega, EEN	╉	≁					+			-4	-	+	+				-	-							-	+			+	+		+	+	+	╢─	++	+	++	+	\vdash	+	
PCB Design			+	+	+	+	+		-	+		-				\vdash	╢┨	+	-			+	+	+	+		+			+	+			+	+	11-	\vdash	+	++	+	\vdash	+	
PCB Production (30?+1.000)	R, IJC (300k€)		+	+	+	+	+		10	+		10			30		╢┨	+		1-1	300	-	+	+	+		+			+	+			+	+	11-	\vdash	+	Ħ	\square	\vdash	+	
PCB Testing (indus)	Re, IJCe		+	+	+		+	1						\square				+						\square	+		+			+	+			+	+	11-	\square	+		\square	\square	+	
Sensors (100+4,000)	C (2000k€), IN2P3 (0k€), Kyu	shu	(2,00	0k€)				П																										\top	T		\square	\top	T	\square	Π	\top	
Sensor testing	C / Kyuhsu / CERN ?																																		T						\Box		
ASU Building	I C, IJCm																																										
Design Cradle (U/H)	Rm, IJCm	Ш	\rightarrow	+	-	+	\perp			\perp				\square				\rightarrow					┶		\rightarrow	_	_			\rightarrow	\perp			\rightarrow	╇	╨	\square	\perp	₩	\square	\square	\rightarrow	
Réinstallation AutoClave	Rm	Ш	\rightarrow	+	\rightarrow	+	\perp	\square		_		-	+					\rightarrow						\square	\rightarrow	_	+			\rightarrow	+			\rightarrow	╇	╨⊢	\square	\rightarrow		\square	\vdash	\rightarrow	
Cradles Proto & Production (U/H)		╉	+	+	+	+	+	+	\rightarrow	+-		+	+	+		10	4	-				30	2		_		-			+	+-		▙	+	╇	╨─	\vdash	+	++	+	⊢	+	
Slab Assembly	. <u>m</u>	╉	+	+	+	++	+	⊢	\rightarrow	+		+	+	+		\vdash	╢┨	_				+								+	+		┢	+	╋	╢	\vdash	+	┿╋	╆╌┦	\vdash	+	
Adaptation to DRD6POCc		╉	+	+	+	+				+		+	+	+		\vdash	╢┨	+	+	1-1		+	╋	+	+		+			+	+	\vdash	┢┼┥	+	+	╢─	\vdash	+	┿╋	┢╋	⊢	+	
Extension for 5×2×15 labs	<u>e</u>	╉	+	+	+	+				-	\vdash	+	+	+					+		\vdash	+	+	+	+		+	+	+	+	+	\vdash	H	+	+	11-	++	+	++	+	-+	+	
DAO proto & production	E (20k€ + 60k€ ?)		+	+	+	++	+	1	20	+	\square	-	+	+		60			-		\vdash	+	+	+	+		+	+	+	+	+	\square	H	+	+	11-	\vdash	+	++	+	-+	+	
Cooling & Absorbers			+		+		+	N										-				+					+			+	+			+	+		\square	+		\square	\square	+	
Cooling Assembly	l Rm																																							\square			
Structure															Z					1																							
Design structure	l Rm	Ш																																\rightarrow	\bot	╨	\square		\square		\square	\rightarrow	
Test de la struct existante & Simu	l <u>Rm</u>	┹	\rightarrow	+	+	+	+	+	_	—		-	_	+			╢┤	\rightarrow	_				_	+	\rightarrow	_	+			\rightarrow	+		▙	\rightarrow	╇	╨⊢	\vdash	+		+	\vdash	\rightarrow	
Instru Structure	1 Rm	┹	+	+	+	+	+	+	\rightarrow	+		+	+	+		\vdash	╢┨	\rightarrow	-				-	+	\rightarrow	_	+-			+	+		▙	+	╇	╨⊢	\vdash	+	++	+	⊢	+	
Material (Eikrot W + Maulda)	16		+	+	+	+	+	+	+	+-	\vdash	+	+	+	\vdash	\vdash	╢┨	+				+	+	+	+	-	+	\vdash	+	+	+	\vdash	┢┝┥	+	+	╉	++	+	┿	Med	idativ	an of	, r
Droduction Moulds & Alveoli	2m	╉	+	+	+	++	+	+		+	\vdash	-	+	+			╢┨	+	_		~		+	+	+		+	\vdash	+	+	+	\vdash	┢┝┥	+	+	╢─	\vdash	+	┿╋	Cor	nolet	ie mr	odule
Assemblane	2m	╉╫┥	+	+	+	+	+	+	+	+		+	+	+	\vdash	\vdash	╢┨	+	+								+	\vdash	+	+	+	\vdash	1	+	+	╢╴	\vdash	+		for	prod	uctio	n
Caracterisation	Rm	╉╋	+	+	+	+	+	+	+	+		+	+	+	\square	\vdash	╢┨	+	+			+		30			-	\square	+	+	+		H	+	\pm	ᡟᡫ	\vdash	+		-		_	
Validation		Ħ	+	+	+	+	+	+	+	+		+	+	+			╢┨	+	+			+	+										1	Ť	Ť	+	\square			\square	T	+	
Beam tests		Ħ	+	+				+		+			+	\top		30			30			30	\top		30	_		45							0	+		60	T	\square	\square	+	
Analysis	h-																																									\pm	

	1 1		2()23			20)24			20	25			20	26			202	27			202	28	
SiW-ECAL	Ressources	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4	Q1	Q2 (Q3 C	24 Q1
173 p.m	Phys (φ)	1,3	3,7	3,3	4,3	3,3	6,3	5,0	5,7	3,7	3,0	3,7	3,7	1,0	2,0	3,0	3,0	0,7	0,3	0,3 (0,3				
101 p-m	LLRe. IJCe, IFIC, Q	0,3	1,3	1,3	0,7	0,7	1,0	2,3	1,7	3,7	3,0	4,3	2,0	3,0	1,0	2,0	4,0	0,7	0,7	+			+	+	
45 p.m	LI Rm. LICm	<u> </u>		13	17	10	0.3	0.7	3.0	2.0	10	2.0	2.0		-	-	-	-	-	+			+	-	
82 p.m	Others			1.0	10	2.0	2.2	2.2	2.7	4.0	2.0	2,0	2,0	10		_	10	-	0.2	+		-	+	+	+
02 pm	Milestenes	<u> </u>		1,0	1,0	3,0	2,3	2,3	2,7	4,0	3,0	2,7	3,0	1,0		-	2	\rightarrow	0,5	-	-	_	+	+	-
1:	milestones	<u> </u>				2		-	2		3	1	3		_	_	2	_	_	4	_	_	\rightarrow	\rightarrow	
148 p·m	Contrats	1	1	1	1	3	3	3	3	4	3	3	3	3	3	3	3	2	2	2	2				
560 k€	IN2P3 Funds	<u> </u>	Ļ	L	20		1	.70			2	50			12	0		-				_			
		╎┨┤┤	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	┼┼╔		CC			⊢					Macl	nine	
Eal for ECC	All	╎┨┤┤	+++	+++	+++	+++	+++	+++	+++	+++	+++											- 0	lecis	sion	
Lorioricc		╢┼	+++	+++	+++						+++							٢.					\square	\neg	-
Low occupacy & High-rate FCAL		┼╂┼┼	+++	╉┼┼	+++	-	Spec	elec I	LL.	┛┼┼	┢┟╡	Full	perfs	studi	ies			Н	Prop	posi	tion	H	\vdash	-+	+
Simulation of ILD4FCC/CLD				+++	+++	┍╸┼	+++	+++	╉┼┼	╉┼┼	╇╇┼	╂ŦŦ		-					dete	ector	r				+
ASICs scaling functions	LLRe.Ω							+++	1	1	+++	1		+											+
1 st estimation of fluxes	LLRø													+						\square					
PFA performances	LLR, IP2I, IJClab											1								\square			\square		
2 nd est. of fluxes & implications	LLRm									1	# EE I	protot	/ne			`v1			10		2				
		₩₩						+++					,pc	1		~ VI	1	Ł	~5		2			$ \rightarrow $	\perp
Electronics		₩₩			\square		\square	+++			\square	$\downarrow \downarrow \downarrow$												$ \rightarrow $	\perp
ASICs		↓↓ ↓↓	+++	+++																			\square	\vdash	\perp
DRD6ROC ASIC Design	Omega	╎┨╽┤	+++	+++			100				100													$ \rightarrow $	\rightarrow
ASIC Production (16,000)	Omega (3×100k€)	╡┫┥┤┥	+++	+++	+++		100		┛┼┼	+++	100			+	1	00				\square				\rightarrow	+
ASIC Testing (Robot)	Omega, LLR	┼╂┼┼	+++	+++	+++	╉┼┼	+++	┽┍╇	╉┼┼	+++	+++	┢╇╇	+++	+				-		\square			\vdash	-+	+
PCD Design		╎┨┤┤		+++	+++		+++	+++	+++			+++			<u> </u>			⊢		\square			\vdash	\rightarrow	_
PCB Production (10+20)	LLR_L1C (30k€)	┢╋╋┼┼		+++	+++		+++	+++	+++		10				20			-		H			\vdash	\rightarrow	+
PCB Testing (indus)		╞╋╋┼┼	+++	╉┼┼	+++	╉┼┼	+++	+++	╉┼┼	╉┼╆				+			•			H			\vdash	-+	+
Sensors					+++			+++		╉┼╄				+	\vdash		1			H			\vdash	\rightarrow	-
Sensor design (if 8") & purchase	IFIC (20k€), Kyushu (20k€)			+++				+++	1			1	111							\square					+
Sensor testing	IFIC / Kyuhsu / CERN ?									\mathbf{m}										\square					
ASU Building (4+	IFIC, IJCm									1										\square			\square		
DAQ																									
Adaptation to DRD6ROCs	IJCe																								
DAQ proto & production	ICJE (20k€ + 60k€ ?)	4444			\square			+++			20		\square											$ \rightarrow $	
		↓↓ ↓↓	+++	+++	+++		+++	+++	+++	+++					00	ina		-	┢				\square	\vdash	
	110-	╎╉┼┼	+++	+++	+++		+++	+++	╉┼┶		ooling	desig	n 📙		roto	itype	•		Н	\square			\vdash		+
Cooling R&D (If needed)	LLRM	╎╂┼┼	+++	+++	+++	┢┢┥	+++	+++	╉┼╄	┫┟┯	+++	+++	╤╃┦			- 10-		—		\square			\vdash		+
Dimensionning		┼╂┼┼	+++	╉┼┼	+++					╉┼┼	+++	╉┼┼	+++	+	-			⊢		H			\vdash	-+	+
Prototyping	LLRII, VD	┼╂┼┼	+++	+++	+++	╉┼╄								-	\vdash	-		⊢		\square			\vdash	-+	+
C02 cooler	80k€ 2	┢╋┼┼	+++	╉┼┼	+++	╉┼┼	+++	+++	╉┼┼	80				-	-			\vdash		\vdash			\vdash	\rightarrow	+
			+++	┫┼┼	+++	╉┼┼	+++	+++	╉┼┼			Rep	port or	n						\vdash			\vdash	\rightarrow	+
Structure			+++	┫┼┼	+++	╉┼┼	+++	+++	╉┼┼	╉┼┼	┢┦	stru	icture					\vdash		Η			\vdash	\dashv	+
Design structure	LLRm								╉┼┼											Η			\square	$\neg \uparrow$	+
Test de la struct existante & Simu	LLRm				+++		+++													\square			\vdash	\neg	+
Instru Structure	LLRm		+++	1	$\uparrow \uparrow \uparrow$	1	+++	+++			1	1++	$\uparrow \uparrow \uparrow$	\top						\square			\square	\top	+
Mesure Bragg Equipment	20k€							20																	
			- 1 T T		1 E T															_	_		. – 7		

			20)23			20	24			20				2027					202	8				
SiW-ECAL	Ressources	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 (Q2 (Q3	Q4	Q1 (22 C	23 Q)4 Q1
173 p.m	Phys (φ)	1,3	3,7	3,3	4,3	3,3	6,3	5,0	5,7	3,7	3,0	3,7	3,7	1,0	2,0	3,0	3,0	0,7	0,3	0,3	0,3				
101 p·m	LLRe. IJCe, IFIC, Ω	0,3	1,3	1,3	0,7	0,7	1,0	2,3	1,7	3,7	3,0	4,3	2,0	3,0	1,0	2,0	4,0	0,7	0,7						
45 p.m	LLRm, IJCm			1,3	1,7	1,0	0,3	0,7	3,0	2,0	1,0	2,0	2,0				1						+	+	
82 p.m	Others			1,0	1,0	3,0	2,3	2,3	2,7	4,0	3,0	2,7	3,0	1,0			1,0	(0,3				+	+	
15	Milestones					2		1	2		3	1	3				2			1			+	+	
148 p.m	Contrats	1	1	1	1	3	3	3	3	4	3	3	3	3	3	3	3	2	2	2	2		+	+	
560 k€	IN2P3 Funds	20 170						25	50		12	20				-		L							
Timing	LLR, IJC, IP2I																								
Timing in PFA	LLR, IJC, IP2I																								
ANR PRCI ?	CDD + PhD/2																								
ANR PRC ?	CDD																								
Optimisation	LLR, IJC + KIT																								
Dedicated Timing layer (Kyushu)	KIT ?														Ch	a a ku	والانب								
Dedicated Timing layer (KIT ?)	Kyushu?														Tail	eck i kan i	wiuri Gan	1 5#1	- 1						
															Teur	Kauri	Jai	nu.					\neg		
Proto 1 Tower 15 layers									<u></u>														-	-	
ASIC testing	LLRe							Proto r	ready				Pu	ublica	atior	n and	d						+	+	
Building ASU (15)	IJC, IFIC									F⊢⊢			da	ita sa	amp	le							+	+	
ASU Commisionning	ICJ, IFIC, Kyushu	† †††																•			_		+	+	
DAO adpatation	IJCe, IFIC																						+	-	
Slab & Casing design	LLRm, IJCm														\neg	-							+	+	
Buiding casing	IJCm (10k€?)					10																	+	+	
Assembly & Commissioning	ICJIab. IFIC																						+	+	
BT & analyse	IJCe, IJCe, IFIC, IJC, Kyushu	† ††																					+	+	
	PD analyse	1++-																					+	+	
Travel	LLR_UC (20k) + Eurolabs (20k€?)	╂┼┼	+++	╉┼┼╴		╏┼┼╴		20	20							-+					_	-+	+	+	
AIDAinnova															\neg								+	+	
		╉┼┼┼														-					_	-+	+	+	
LUXE Proto 2 Towers 7–12 lavers																						-+	+	+	
Wafer purchase (IEIC/IN2P32)	IFIC (20k€) IN2P3 (20k€) Kyushu	(22)			20				F	Proto r	ready			~	Pu	ublica	atio	n		H			+	+	
Buidling ASUs (10)			+++	╉┼┼╴					╏┼┌╹											•	_	-+	+	+	
Assembly & Commissioning	LIC IFIC	╂┼┼	+++	╉┼┼╴	$\left \right $	╏┼┼╴									+	-+					_	-+	+	+	
BT & analyse	All	╂┼┼	+++	╉┼┼╴		╏┼┼╴										-+					_	-+	+	+	
Di a anayoo	PD analyse	╉┼┼╴	+++		+++										+	-					_	-+	+	+	
Travel	All DMI ab ?	╉┼┼╴	+++	╉┼┼┼		╉┼┼╴				20	20				+	-					-	-+	+	+	
																						-+	+	+	
LUXE Proto 3Towers 7–12 layers																								+	
Funding						•																			
Wafer & W purchase	LLRm, IFIC, PCB (300k€ ?)																								
Buidling ASUs (10)																						\Box			
Assembly & Commissioning																						\square			
BT & Analyse					\square																	$\neg \uparrow$	\neg		
ANR LUXE ?																						$\neg \uparrow$	\neg		
	PD analyse																								

Short term spin-off

The prototypes can have some direct usage for several fixed target experiments.

The LUXE experiment near XFEL at DESY aims at measuring non-linear QED Compton and pair production starting in 2025. The beam conditions comparable to ILC's would be a perfect fit for the current electronics.

Then, various small-scale experiments looking for dark photons (LUXE at XFEL, EBES at KEK, Lohengrin at ELSA) could also almost directly use the SiW-ECAL prototype.

Beside their intrinsic physical interest, running the device in such experiments during couples of months will bring invaluable instrumental experience with composed slabs.

LPNHE ?

Sensors : Semiconductor simulation & qualification @CLAP

Integration : mechanical constraints, cooling

PCB design : dense & delicate

System design : timing, powering, signaling, dual phase CO2 cooling...

Test & measurements : functionnal (asic, daq), physics + automation + source (X, ...)

Computing & IA : clustering, pattern recognition, smart calibration, etc.

+ Physics