19 June 2023 LPNHE - Jussieu - Paris

Sub-GeV Dark Matter and X-rays

### Marco Cirelli (CNRS LPTHE Jussieu Paris)



19 June 2023 LPNHE - Jussieu - Paris

Sub-GeV Dark Matter and X-rays

### Marco Cirelli (CNRS LPTHE Jussieu Paris)

based on : Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493 Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

### Particles

thermal relics 10<sup>10</sup> eV weak scale (~1 TeV)

#### A matter of perspective: plausible mass ranges



90 orders of magnitude!

#### A matter of perspective: plausible mass ranges



# WIMPs

new physics at the TeV scale thermal freeze-out

## WIMPs

new physics at the TeV scale thermal freeze-out

# WIMPs

Collider Searches

Indirect Detection

#### Direct Detection

### DM as a thermal relic from the Early Universe

(0.1)

#### Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic  $\Omega_{\rm DM} \simeq 0.23$  for  $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$ 



Weak cross section:

$$\langle \sigma_{\mathrm{ann}} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,\mathrm{TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\mathrm{fev})$$



new physics at the TeV scale thermal freeze-out

# WIMPs

Collider Searches

Indirect Detection

#### Direct Detection

new physics at the TeV scale

LHC

thermal freeze-out

## WIMPs

Xenon, PandaX...

Fermi, AMS, IceCube...

#### A matter of perspective: plausible mass ranges



90 orders of magnitude!

#### A matter of perspective: plausible mass ranges



#### 90 orders of magnitude!



#### Sub-GeV DM

#### WIMPless Dark Matter

Feng & Kumar 0803.4196

a.k.a. hidden sector DM  $\sim$  secluded DM

#### Sub-GeV DIM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM  $\sim$  secluded DM

 $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{{
m TeV^2}}$  $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_x^2}{m^2}$ 

#### Sub-GeV DM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM  $\sim$  secluded DM



if  $g_x$  is small, *m* 'naturally' small (but nothing points to a precise value)



Production mechanism: just thermal freeze-out of these annihilations

#### Sub-GeV DM

#### • 'SIMP miracle':

scalar DM with relic abundance set by 3 -> 2 processes

points to

$$m_{\rm DM} \sim \alpha_{\rm eff} \left( T_{\rm eq}^2 M_{\rm Pl} \right)^{1/3} \sim 100 \; {\rm MeV}$$

Hochberg et al 1402.5143

'naturally realized' in a dark-QCD-like setup  $\alpha_{\rm eff} = \mathcal{O}(1)$  i.e.  $g_x \sim 4\pi$ 



#### Sub-GeV DM

#### • 'MeV (scalar) DM' (for the Integral 511 KeV excess?)

Boehm & Fayet hep-ph/0305261

In conclusion, scalar Dark Matter particles can be significantly lighter than a few GeV's (thus evading the generalisation of the Lee-Weinberg limit for weakly-interacting neutral fermions) if they are coupled to a new (light) gauge boson or to new heavy fermions F (through non chiral couplings and poten-

#### Sub-GeV DM

'simplified (light) DM models'

Knapen, Lin, Zurek 1709.07882

#### Sub-GeV DM

#### 'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

$$\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n,$$





#### Sub-GeV DM

#### 'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

$$\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n$$





#### $10^{-3}$ $B \to K \phi$ $10^{-6}$ n-Xe $K \to \pi \phi$ 5th force $\sim 10^{-9}$ SN1987a HB stars RG stars $10^{-12}$ *φīt* $10^{-15}$ keV MeV GeV eV $m_{\phi}$

#### constraints on the DM



#### constraints on the mediator

#### Sub-GeV DIM

#### 'simplified (light) DM models'

Knapen, Lin, Zurek 1709.07882

scalar DM and hadrophilic scalar mediator





scalar DM and leptophilic scalar mediator

GeV

 $10^{3}$ 

#### Sub-GeV DM

#### 'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

 $\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_e\phi\overline{e}e.$  $\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n,$  $10^{-3}$  $10^{-}$ Fifth force  $B \to K \phi$  $10^{-6}$  $10^{-6}$  $K \to \pi \; \phi$ beam dump BBN th forc 10- $\sim 10^{-9}$ SN1987a  $y_e$ 10-12 HB stars G stars  $10^{-12}$  $10^{-1}$ φīt  $10^{-15}$  $10^{-18}$ GeV eV keV MeV keV eV MeV  $m_{\phi}$  $m_{\phi}$  $m_{\phi} = 10^{-3} m_{\chi}$  $m_{\phi} = 10^{-3} \, \mu_{\chi e}$  $10^{-36}$  $10^{-36}$ SENSE  $10^{-39}$ 10<sup>-39</sup> SuperCDMS G2  $\begin{bmatrix} 10^{-42} \\ 10^{-43} \\ 10^{-48} \end{bmatrix}_{10^{-48}}^{5}$  $\int_{\mathcal{L}} \frac{\log 1}{\delta} 10^{-42}$  $10^{-48}$ 100 kg-yr- $10^{-43}$  $10^{-51}$  $\frac{\Omega_{\chi}}{\Omega_{\rm DM}} = 1$  $\frac{\Omega_{\chi}}{\Omega_{\rm DM}} = 1$  $10^{-54}$  $10^{-3}$  $10^{-2}$  $10^{0}$  $10^{-1}$  $10^{1}$  $10^{2}$  $10^{3}$  $10^{-2}$  $10^{-3}$  $10^{-1}$  $10^{0}$  $10^{1}$  $10^{2}$  $m_{\chi}$  [MeV]  $m_{\chi}$  [MeV]

#### Knapen, Lin, Zurek 1709.07882

#### Sub-GeV DM

#### 'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator



 $10^{-4}$ 

 $10^{-3}$ 

 $\frac{\overline{\Omega_{\chi}}}{\Omega_{\rm DM}} = 1$ 

 $10^{-2}$ 

 $10^{-1}$ 

 $10^{0}$ 

 $m_{\chi}$  [MeV]

 $10^{1}$ 

 $10^{2}$ 

 $10^{3}$ 





#### Knapen, Lin, Zurek 1709.07882

fermionic DM and vector mediator (e.g. dark photon)

#### $\mathcal{L} \supset = -\frac{1}{2}m_{A'}^2 A'_{\mu} A'^{\mu} - \frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} - \frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu} - y_{\chi}A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$





#### Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

#### Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

### Why not!





### **Direct Detection of sub-GeV DM**





- electron recoil signal
- Migdal effect
- new experimental strategies





### Collider searches of sub-GeV DM

Missing  $E_T$  signature is challenging for LHC experiments

- fixed target / beam dump experiments
- search for associated states,
   i.e. particles of a new 'dark sector'



```
e.g. LDMX coll. 1808.05219
```

B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024, [0906.5614].

LDMX collaboration, T. kesson et al., Light Dark Matter eXperiment (LDMX), 1808.05219. L. Doria, P. Achenbach, M. Christmann, A. Denig, P. Glker and H. Merkel, Search for light dark matter with the MESA accelerator, in 13th Conference on the Intersections of Particle and Nuclear Physics, 9, 2018. 1809.07168.

M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, 7, 2017. 1707.04591.





### Indirect Detection: charged CRs $\bar{p}$ and $e^+$ from DM annihilations in halo


### Indirect Detection: charged CRs $\bar{p}$ and $e^+$ from DM annihilations in halo



# Indirect Detection: charged CRs $\bar{p}$ and $e^+$ from DM annihilations in halo



#### Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect

# Indirect Detection: charged CRs $\bar{p}$ and $e^+$ from DM annihilations in halo



#### Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect... with one exception!

### Indirect Detection: charged CRs

Boudaud, Lavalle, Salati 1612.07698

Electron+positron measurements by Voyager I



Propagation A = strong reacceleration Propagation B = weak/no reacceleration

## Indirect Detection: charged CRs

#### Boudaud, Lavalle, Salati 1612.07698

Electron+positron measurements by Voyager I



## **Indirect detection: photons**

#### adapted from 1611.02232



Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?, COSI?

| Amego<br>Compair | satellite<br>satellite | 2020s?<br>2020s? | HEP detectors<br>HEP detectors | $\gamma$ -rays<br>$\gamma$ -rays | 0.2 - 10  GeV<br>0.2 - 500  MeV |
|------------------|------------------------|------------------|--------------------------------|----------------------------------|---------------------------------|
| Ska              | S.Africa+Australia     | 2020s?           | radio telescope                | radio                            | 50  MHz - 30  GHz               |
| INO-ICAL         | India                  | 2020s?           | calorimeter                    | neutrinos                        | $1 - 100 { m GeV}$              |
| E-ASTROGAM       | satellite              | 2030s?           | HEP detectors                  | $\gamma$ -rays                   | $0.3 { m MeV} - 3 { m GeV}$     |

Cirelli, Strumia, Zupan to appear

## **Indirect detection: photons**

#### adapted from 1611.02232



Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?, COSI?

| Amego<br>Compair | satellite<br>satellite | 2020s?<br>2020s? | HEP detectors<br>HEP detectors | $\gamma$ -rays $\gamma$ -rays | $0.2 - 10 { m ~GeV}$<br>$0.2 - 500 { m ~MeV}$ |
|------------------|------------------------|------------------|--------------------------------|-------------------------------|-----------------------------------------------|
| Ska              | S.Africa+Australia     | 2020s?           | radio telescope                | radio                         | 50  MHz - 30  GHz                             |
| INO-ICAL         | India                  | 2020s?           | calorimeter                    | neutrinos                     | 1 - 100  GeV                                  |
| E-ASTROGAM       | satellite              | 2030s?           | HEP detectors                  | $\gamma$ -rays                | $0.3 { m MeV} - 3 { m GeV}$                   |

Cirelli, Strumia, Zupan to appear

### Some recent studies

Essig, Kuflik, McDermott, Volansky et al., 1309.4091

Laha, Muñoz, Slatyer, 2004.00627**v1** 

NB: 'prompt' emission only





10<sup>-22</sup>

10<sup>-23</sup>

 $10^{-24}$ 

10<sup>-25</sup>

*p*-wave,

 $x_{\rm kd} = 10^{-1}$ 

 $x_{\rm kd} = 10^{-4}$ 

10

 $10^{-30}$ 

Essig, Kuflik, McDermott, Volansky et al., 1309.4091

Laha, Muñoz, Slatyer, 2004.00627v1

 $\langle \sigma v \rangle_0 (\nu_{\rm DM}/\nu_0)^2 \ [\rm cm^3/sec]$ 10<sup>-26</sup>  $10^{-27}$ HEAO-1 *p*-wave s-way  $x_{\rm kd} = 10^{-6}$ -INTEGRAL 10-28 -COMPTEL 10<sup>-29</sup> - EGRET FERMI 10 10<sup>2</sup>  $10^{3}$  $10^{4}$  $m_{\chi}$  [MeV]  $\langle \sigma v 
angle_{e+e^-} (v_\chi/v_0)^eta \; [{
m cm}^3 \, {
m s}^{-1}]$ INTEGRAL  $10^{-24}$  $x_{\rm kd} = 10$ (this work) Thermal Relic  $10^{-26}$ Voyager CMB  $10^{-28}$ 

s-wave

1000

100

 $m_{\chi}$  [MeV]

 $\chi \chi \rightarrow e^+ e^-$ 

NB: 'prompt' emission only

## Indirect detection: photons





### How to do better? ICS & X-rays!

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493

Annihilation channels, focus on the MW (assume standard NFW profile) DM DM  $\rightarrow e^+e^-$ DM DM  $\rightarrow \mu^+\mu^-$ DM DM  $\rightarrow \pi^+\pi^-$ 

#### Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$



#### Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$



#### Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$



Annihilation channels DM DM  $\rightarrow e^+e^-$ DM DM  $\rightarrow \mu^+\mu^-$ DM DM  $\rightarrow \pi^+\pi^-$ 



'Prompt' emission: Final State Radiation (FSR)



Annihilation channels DM DM  $\rightarrow e^+e^-$ DM DM  $\rightarrow \mu^+\mu^-$ DM DM  $\rightarrow \pi^+\pi^-$ 



'Prompt' emission:
Final State Radiation (FSR)
Radiative μ decay

Usually irrelevant, but <u>not</u> for  $\mu$ decaying 'at rest'!



Annihilation channels DM DM  $\rightarrow e^+e^-$ DM DM  $\rightarrow \mu^+\mu^-$ DM DM  $\rightarrow \pi^+\pi^-$ 



'Prompt' emission:
Final State Radiation (FSR)
Radiative µ decay

Secondary emission: ICS: inevitably associated to annihil to charged states



#### Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Key message: ICS allows to probe sub-GeV DM with X-ray data



## Analysis

### Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

#### latitude binned data, central MW





## Analysis

### Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

#### latitude binned data, central MW



remove Gal Plane



latitude b [degrees]

### Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

#### latitude binned data, central MW



remove Gal Plane 5 energy bands



0.005

0.000

-50

0

latitude b [degrees]

50

# Analysis

bands  $i \in \{b bins\}$ 

### Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

#### latitude binned data, central MW



remove Gal Plane 5 energy bands

Test Statistics: exclude if DM exceeds data by more than ~2 $\sigma$  global. More precisely:  $\chi^2_{>} = \sum_{n=1}^{\infty}$ 



 $\frac{(\text{Max}[(\Phi_{\text{DM}\gamma,i}(\langle \sigma v \rangle) - \overline{\phi_i}), 0])^2}{\sigma_i^2}$ 





Bounds on all 3 channels

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493







#### Essig+ 1309.4091

# Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$



Essig+ 1309.4091

Boudaud+ 1612.07698

# Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$ Voyager1 bounds stronger/weaker dep. on data



Essig+ 1309.4091

Boudaud+ 1612.07698

Slatyer+ 1506.03811 Lopez-H+ 1303.5094 Diamanti+ 1308.2578 Liu+ 2008.01084

#### Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$ Voyager I bounds stronger/weaker dep. on data CMB bounds depend on s-/p-wave annihilation









#### NuSTAR 2015-2020 data

Krivonos et al.2011.11469 Mori et al., 1510.04631 Hong et al., 1605.03882 Perez et al., 1609.00667 Roach et al., 1908.09037







#### Suzaku 2009 data

Yoshino et al., 0903.2981





#### XMM-Newton 1999-2018 data

Dessert et al., 1812.06976 Foster et al., 2102.02207

https://github.com/bsafdi/XMM\_BSO\_DATA Kudos to Safdi, Rodd etc!







#### XMM-Newton 1999-2018 data



Dessert et al., 1812.06976 Foster et al., 2102.02207

https://github.com/bsafdi/XMM\_BSO\_DATA Kudos to Safdi, Rodd etc!

#### Results decay



#### **Results annihilation**


### More analysis

#### Suzaku 2009 data

Yoshino et al., 0903.2981



#### Results decay



#### **Results** annihilation



### More analysis

#### NuSTAR 2015-2020 data

Krivonos et al.2011.11469 Mori et al., 1510.04631 Hong et al., 1605.03882 Perez et al., 1609.00667 Roach et al., 1908.09037



#### Results decay



#### **Results annihilation**



### More analysis

#### Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200



#### Results decay



#### **Results** annihilation



### Results

#### Decay

#### Annihilation



# Results



Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Bounds on all 3 channels ICS allows to vastly improve at large  $m_{\rm DM}$  Deeper than the s-wave CMB bounds

# Results



Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Bounds on all 3 channels ICS allows to vastly improve at large  $m_{\rm DM}$  Dominant bounds above 50 MeV



Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854





Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854



Sub-GeV DM is interesting and emerging: Why not?!

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data



Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data

Impose stringent constraints





Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data

Impose stringent constraints





