UK@GANIL - October 26-27 2023 - J. Piot

SYSTEM FOR THE INVESTIGATION OF RECOILING IONS USING S³ J. PIOT ON BEHALF OF THE SIRIUS COLLABORATION

SIRIUS at S³

System for the Investigation of Recoiling Ions Using S³

Silicon Tunnel : Large size a/e- discrimination

Implantation detector : Large size High energy resolution Adapted granularity

Time of Flight : Emissive foils Thin windows

γ-ray detection :5 EXOGAM clover detectors

Front-end & back-end electronics : Digital signal processing Triggerless Dual gain

Ion Tracker (GANIL)

Position measurement at the optical focal plane Start Time of Flight measurement

6 8 Tracker X(cm)

Secondary electron detector :

Active area (in beam) : 20x10 cm2

Mylar foil thickness : 0,9 µm

1.1

10₂

6

-10^{[___} -10

-8

-6

Fracker Y (cm)

Gas pressure (CF4) : 6-7 mbar

Time resolution : 761+/- 148 ps FWHM

Time of Flight Resolution : 2,2 ns FWHM

UK@GANIL - October 26-27 2023 - J. Piot

-2

0

2

Silicon Box

DSSD + 4 Tunnel detectors

Maximum detection efficiency for the escaping alpha particles & conversion electrons Best energy resolution at low energy

Ability to process decay chains: Large pulse (>50 MeV) followed quickly (~10 μs) by a weak pulse (<15 MeV) No dead time to detect short lived decay chains

> Windowless detectors (<50 nm) Cooling through ceramic frames Dual-gain electronics with fast reset

DSSD (IRFU)

Courtesy of T. Chaminade UK@GANIL - October 26-27 2023 - J. Piot

DSSD Tests (GANIL & IRFU)

Preamplifier pulse digitized by NUMEXO Boards

Automatic gain switch :

UK@GANIL - October 26-27 2023 - J. Piot

20.9 keV FWHM @ 5.8 MeV

100 keV FWHM ~1%

Figures courtesy of R. Chakma

Tunnel (IPHC & IJCLab)

Tunnel tests (IPHC)

Pad Energy resolution (TNT2 + CREMAT PAC) : 13.6 to 17.8 keV

14.8 keV FWHM @ 6MeV

UK@GANIL - October 26-27 2023 - J. Piot

PSA Discrimination degraded α / β

Pierre Brionnet (IPHC)

Gamma-spectroscopy (IJCLab) **Optimized Gamma efficiency for low energy transitions : Compact geometry Thin capsule for the Silicon detectors**

(CSNSM)

Colloque GANIL 2017 - J. Piot

The SIRIUS Collaboration

- GANIL : D. Ackermann, M. Blaizot, A. Boujrad, R. Chakma, E. Clément, S. Coudert, J. Goupil, S. Herlant, G. Lebertre, L. Legeard, C. Maugeais, J. Piot, F. Saillant, G. Wittwer
- IJCLab : V. Alaphilipe, L. Gibelin, K. Hauschild, N. Karkour, X. Lafay, F. Leblanc, D. Linget, A. Lopez-Martens & 10 interns from MIT UL ESME universities.
- IPHC : P. Brionnet, F. Dechéry, O. Dorvaux, H. Faure, M. Forge,
 B. Gall, Th. Goeltzenlichter, K. Kessaci, C. Mathieu
- IRFU : M. Authier, J, Bequet, Th. Chaminade, A. Drouart, J. Kallunkathariyil, B. Sulignano, Ch. Theisen, D. Thisse, G. Tocabens, M. Vandebrouck

Conclusion

- SIRIUS is a decay station designed for rare events with charged particles and gamma-ray detection.
- Dual gain preamplifiers and digital electronics for silicon detectors without deadtime.
- High gamma-ray efficiency.
- High transmission and rejection from S³.