

ACTAR TPC: SWOS **Performances**

HANZE TO BE

- \checkmark Drift region: principle
	- Transparent to particles on 4 sides
	- \rightarrow Wire field cage
	- Homogeneous vertical drift electric field
	- \rightarrow Double wire field cage: 2 mm/1 mm pitch
- \checkmark Amplification region: principle
	- Bulk Micromegas (CERN PCB workshop)
	- Local gain reduction via pad polarization
- \checkmark Segmented pad plane
	- Micromegas
	- \rightarrow transverse multiplicity \approx electron straggling: 2x2 mm² pads
	- 16384 pads with very high density: challenge!
	- \rightarrow Two solutions investigated
- \checkmark Electronics: GET

GET electronics:

- 512 samples ADC readout depth x 16384 pads
- \rightarrow volume sampling in 8 Mega voxel
- adjustable gain, peaking time, individual trigger: pad per pad

Physics cases addressed:

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

■ Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

 \Box Reactions with (very) low intensity beams

 \rightarrow thick target, mixed target, possibly no ¹²C contamination

Physics cases addressed:

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

Reactions with (very) low intensity beams

 \rightarrow thick target, mixed target, possibly no ¹²C contamination

 \checkmark Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni (May 2019) $^{54}{\rm Ni}$ implantation – proton decay: $\rightarrow 10A$ MeV $^{54}{\rm Ni}$ beam in 900 mbar Ar(95%) + CF₄(5%)

> **J. Giovinazzo et al. "4D imaging of proton radioactivity" Nature communications 2021**

Simultaneous observation of Ni track (6 MeV/pad) and proton tracks (60 keV/pad)

 \checkmark Decay of T_{1/2} = 155 ns isomer : OK!

 \checkmark Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni (May 2019) $^{54}{\rm Ni}$ implantation – proton decay: → 10A MeV $^{54}{\rm Ni}$ beam in 900 mbar Ar(95%) + CF₄(5%)

J. Giovinazzo et al.: 4D imaging of proton radioactivity, Nature communications 2021

© **J. Giovinazzo (2020)**

- the "high l" orbitals that mediate proton radioactivity in this region are also active in super-heavy nuclei and responsible for magic numbers in these nuclei

 \checkmark Proton-decay branches from the 19/2⁻ isomer in ⁵³Co (May 2019) 53 Co implantation – proton decay: → 10A MeV 53 Co beam in 400 mbar Ar(95%) + CF₄(5%)

 \checkmark Decay of T_{1/2} = 239 ms isomer : OK

Measurement of 0.025 % BR : OK

(not affected by background)

50 years after the discovery of proton radioactivity (53mCo), we reach a complete comprehension of this state

L. Sarmiento et al.: Nature Communications (2023)

26/10/2023 **T. Roger – UK Opportunities at GANIL** 7

Exotic decays in the region of ⁴⁸Ni (May 2021): **PhD thesis A. Ortega Moral (LP2IB)**

Physics cases addressed:

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

 \Box Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

Reactions with (very) low intensity beams

 \rightarrow thick target, mixed target, possibly no ¹²C contamination

Resonant scattering : principle

- \checkmark "Classic" TTIK method (thick solid target, beam stopped inside):
	- $-$ 3 unknown: E_{CM} , θ_{CM} , E^* but only 2 observables $(\theta_{light}$, $E_{light})$
	- \rightarrow unable to disentangle elastic and inelastic channels (no info on E^{*})
- Active Target: one more kinematic parameter (stopping point of the beam-like particle)
	- \rightarrow full identification of the reaction
	- + reconstruction of double differential cross section ($d^2\sigma/d\Omega dE$)

Resonant scattering : performances

Commissioning of the $128x128$ pad full detector

¹⁸O(p,p) and ¹⁸O(p, α) excitation functions: \rightarrow 3.2A MeV ¹⁸O beam in 100 mbar iC₄H₁₀

B. Mauss, et al., NIM A 940, 498 (2019)

 \rightarrow Resolution limited by the angular straggling of the ions in the gas

Resonant scattering : possible upgrade

 \checkmark Resonant scattering : Ecm resolution dominated by the angular straggling in the gas

 \rightarrow Use pure H₂ gas instead of isobutane :

example with ²⁰O+p excitation function, initial energy = 5A MeV

 \rightarrow requires high pressure (partially accomplished)

 \rightarrow requires amplification system for pure mono/diatomic gas (GEM): ongoing

Resonant scattering : 1st physics result

Reactions for astrophysics

Beam line modifications required for ⁸Li(α ,n) reaction @ 1.2A MeV (Expt. M.G. Pellegriti – 2024)

- → CIME cyclotron has (very) low transport efficiency below 2*A* MeV
- \rightarrow Energy degradation in the physics room (G2)
	- \rightarrow Large acceptance Qpoles to reach 100% transmission (for 1 charge state)
	- \rightarrow Energy dispersion due to straggling & degrader inhomogeneities: reconstruction of the incident beam energy with ToF (event bv event): 0.3% resolution possible up to $10^{\rm 5}$ pps

Reactions for astrophysics

New development for high intensity / heavy beams: electrostatic beam mask

High intensity / heavy beams will create important space charge in ACTAR

- \rightarrow Space charge will distort the drift electric field and create deformed tracks
- \rightarrow Beam region must be screened to minimize the distortions
- → Construction of an electrostatic beam mask (ongoing) **mask with double wire planes**

C. Rodriguez et al., NIM A768, 179 (2014)

space charge density 140 pC/cm3 \rightarrow Equivalent: 10⁶ Hz of ¹³⁶Xe @ 7A MeV in 100 mbar iC₄H₁₀

Physics cases addressed:

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

 \Box Reactions with (very) low intensity beams

 \rightarrow thick target, mixed target, possibly no ¹²C contamination

¹⁹N at 30A MeV in 1 bar D₂(90%) + iC₄H₁₀ (10%) → Equivalent **11 mg/cm² CD₂ target + 5.4 mg/cm² C**H₂ target

¹⁹N at 30A MeV in 1 bar D₂(90%) + iC₄H₁₀ (10%) → Equivalent **11 mg/cm² CD₂ target + 5.4 mg/cm² C**H₂ target

\checkmark Study of the ¹⁹N(d,³He) reaction (2020-2021-2022)

¹⁹N at 30A MeV in 1 bar D₂(90%) + iC₄H₁₀ (10%) → Equivalent **11 mg/cm² CD₂ target + 5.4 mg/cm² C**H₂ target

 $E_x = 1.35 \text{ MeV}$

J. Lois Fuentes PhD thesis (U. Santiago de Compostella)

Center of mass angular coverage limited by:

 \rightarrow Backward cm angles: Si thickness

 \rightarrow Forward cm angles: Si trigger: delta electrons (inherent to the use of "high energy" beams) systematically trigger lots of pads (the gain is set high enough to see "high energy" light particles)

 \rightarrow Use « mixed gain » pad plane (GET eletronics feature) : 2/3rd of the pad plane in "low gain" configuration (i.e. transparent to deltas) + last 3rd with high gain (tracking of "high energy" light particles)

26/10/2023 **T. Roger – UK Opportunities at GANIL** 20

Summary

 \checkmark Resonant scattering : Ecm resolution dominated by the angular straggling in the gas

- \rightarrow Optimized with pure H₂ gas (proton scattering)
- \rightarrow New setup for "low energy" beams ongoing
- \rightarrow Technical development for high intensity/heavy beams
- \checkmark Implantation / decay : Tested for 3 different experiments:
- \rightarrow OK for lifetimes $> \sim 100$ ns.
- \rightarrow OK for small branching ratio (no beta background)
- \rightarrow OK for multiparticle tracking
- \checkmark Transfer reactions : thick target without loss of resolution
- \rightarrow (d,³He) reaction study with few 10⁴ pps
- \rightarrow Plans to increase the c.m. angular coverage

ACTAR TPC Collaboration

KU LEUVEN

