



# ACTAR TPC: Performances

THE REAL PROPERTY OF THE PROPE





- ✓ Drift region: principle
  - Transparent to particles on 4 sides
  - $\rightarrow$  Wire field cage
  - Homogeneous vertical drift electric field
  - $\rightarrow$  Double wire field cage: 2 mm/1 mm pitch
- ✓ Amplification region: principle
  - Bulk Micromegas (CERN PCB workshop)
  - Local gain reduction via pad polarization
- ✓ Segmented pad plane
  - Micromegas
  - $\rightarrow$  transverse multiplicity  $\approx$  electron straggling: 2x2 mm<sup>2</sup> pads
  - 16384 pads with very high density: challenge!
  - $\rightarrow$  Two solutions investigated
- ✓ Electronics: GET

GET electronics:

- 512 samples ADC readout depth x 16384 pads
- $\rightarrow$  volume sampling in 8 Mega voxel
- adjustable gain, peaking time, individual trigger: pad per pad





#### 26/10/2023





Physics cases addressed:

□ Time Projection Chamber mode

→ Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

□ Study of excitation functions (resonant scattering, etc...)

 $\rightarrow$  thick target, need to differentiate the reactions channels

□ Reactions with (very) low intensity beams

 $\rightarrow$  thick target, mixed target, possibly no <sup>12</sup>C contamination





Physics cases addressed:

### □ Time Projection Chamber mode

→ Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

Study of excitation functions (resonant scattering, etc...)

 $\rightarrow$  thick target, need to differentiate the reactions channels

Reactions with (very) low intensity beams

 $\rightarrow$  thick target, mixed target, possibly no <sup>12</sup>C contamination





✓ Proton-decay branches from the 10<sup>+</sup> isomer in <sup>54</sup>Ni (May 2019) <sup>54</sup>Ni implantation – proton decay: → 10*A* MeV <sup>54</sup>Ni beam in 900 mbar Ar(95%) +  $CF_4(5\%)$ 

> J. Giovinazzo et al. "4D imaging of proton radioactivity" Nature communications 2021



✓ Simultaneous observation of Ni track (6 MeV/pad) and proton tracks (60 keV/pad)

 $\checkmark$  Decay of T<sub>1/2</sub> = 155 ns isomer : OK!





✓ Proton-decay branches from the 10<sup>+</sup> isomer in <sup>54</sup>Ni (May 2019) <sup>54</sup>Ni implantation – proton decay: → 10*A* MeV <sup>54</sup>Ni beam in 900 mbar Ar(95%) +  $CF_4(5\%)$ 

#### J. Giovinazzo et al.: 4D imaging of proton radioactivity, Nature communications 2021



J. Giovinazzo (2020)

- the "high l" orbitals that mediate proton radioactivity in this region are also active in super-heavy nuclei and responsible for magic numbers in these nuclei





✓ Proton-decay branches from the  $19/2^{-1}$  isomer in <sup>53</sup>Co (May 2019) <sup>53</sup>Co implantation – proton decay: → 10*A* MeV <sup>53</sup>Co beam in 400 mbar Ar(95%) + CF<sub>4</sub>(5%)



✓ Decay of  $T_{1/2}$  = 239 ms isomer : OK

Measurement of 0.025 % BR : OK

(not affected by  $\beta$  background)

50 years after the discovery of proton radioactivity (<sup>53m</sup>Co), we reach a complete comprehension of this state

#### L. Sarmiento et al.: Nature Communications (2023)





T. Roger - UK Opportunities at GANIL





### ✓ Exotic decays in the region of <sup>48</sup>Ni (May 2021): **PhD thesis A. Ortega Moral (LP2IB)**







#### Physics cases addressed:

### Time Projection Chamber mode

→ Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

### □ Study of excitation functions (resonant scattering, etc...)

 $\rightarrow$  thick target, need to differentiate the reactions channels

Reactions with (very) low intensity beams

 $\rightarrow$  thick target, mixed target, possibly no <sup>12</sup>C contamination



### **Resonant scattering : principle**



- ✓ "Classic" TTIK method (thick solid target, beam stopped inside):
  - 3 unknown:  $E_{CM}$ ,  $\theta_{CM}$ ,  $E^*$  but only 2 observables ( $\theta_{light}$ ,  $E_{light}$ )
  - $\rightarrow$  unable to disentangle elastic and inelastic channels (no info on E\*)
- Active Target: one more kinematic parameter (stopping point of the beam-like particle)
  - $\rightarrow$  full identification of the reaction
  - + reconstruction of double differential cross section ( $d^2\sigma/d\Omega dE$ )





### **Resonant scattering : performances**



✓ Commissioning of the 128x128 pad full detector

<sup>18</sup>O(p,p) and <sup>18</sup>O(p, $\alpha$ ) excitation functions:  $\rightarrow 3.2A$  MeV <sup>18</sup>O beam in 100 mbar iC<sub>4</sub>H<sub>10</sub>

B. Mauss, et al., NIM A 940, 498 (2019)



 $\rightarrow$  Resolution limited by the angular straggling of the ions in the gas



# **Resonant scattering : possible upgrade**



✓ Resonant scattering : Ecm resolution dominated by the angular straggling in the gas

 $\rightarrow$  Use pure H<sub>2</sub> gas instead of isobutane :

example with <sup>20</sup>O+p excitation function, initial energy = 5A MeV

|                                                  | $iC_4H_{10}$  | H <sub>2</sub> | CH <sub>2</sub> |
|--------------------------------------------------|---------------|----------------|-----------------|
| Pressure for stopping the beam                   | 206 mbar      | 2.87 bar       | 165 µm          |
| dN <sub>proton</sub> /dE @ 3A MeV (protons/MeV)  | $2.4.10^{20}$ | $7.2.10^{20}$  | $2.2.10^{20}$   |
| Angular straggling for 5 MeV proton on 10 cm gas | 11 mrad       | 6.5 mrad       | 12.6 mrad       |

 $\rightarrow$  requires high pressure (partially accomplished)

→ requires amplification system for pure mono/diatomic gas (GEM): ongoing



### **Resonant scattering :** 1<sup>st</sup> **physics result**







# **Reactions for astrophysics**



Beam line modifications required for <sup>8</sup>Li( $\alpha$ ,n) reaction @ 1.2A MeV (Expt. M.G. Pellegriti – 2024)

- $\rightarrow$  CIME cyclotron has (very) low transport efficiency below 2A MeV
- $\rightarrow$  Energy degradation in the physics room (G2)
  - $\rightarrow$  Large acceptance Qpoles to reach 100% transmission (for 1 charge state)
  - → Energy dispersion due to straggling & degrader inhomogeneities: reconstruction of the incident beam energy with ToF (event by event): 0.3% resolution possible up to 10<sup>5</sup> pps





# **Reactions for astrophysics**



✓ New development for high intensity / heavy beams: electrostatic beam mask

High intensity / heavy beams will create important space charge in ACTAR

- $\rightarrow$  Space charge will distort the drift electric field and create deformed tracks
- $\rightarrow$  Beam region must be screened to minimize the distortions
- → Construction of an electrostatic beam mask (ongoing)



*C. Rodriguez et al., NIM* A**768**, 179 (2014)

mask with double wire planes

space charge density 140 pC/cm3  $\rightarrow$  Equivalent: 10<sup>6</sup> Hz of <sup>136</sup>Xe @ 7A MeV in 100 mbar iC<sub>4</sub>H<sub>10</sub>







#### Physics cases addressed:

Time Projection Chamber mode

→ Ideal for implantation/decay studies: proton(s) radioactivity, beta-delayed charged particle emission, ...

Study of excitation functions (resonant scattering, etc...)

 $\rightarrow$  thick target, need to differentiate the reactions channels

□ Reactions with (very) low intensity beams

 $\rightarrow$  thick target, mixed target, possibly no <sup>12</sup>C contamination













<sup>19</sup>N at 30A MeV in 1 bar  $D_2(90\%) + iC_4H_{10}(10\%) \rightarrow Equivalent 11 mg/cm<sup>2</sup> CD_2 target + 5.4 mg/cm<sup>2</sup> CH_2 target$ 









<sup>19</sup>N at 30A MeV in 1 bar  $D_2(90\%) + iC_4H_{10}(10\%) \rightarrow Equivalent 11 mg/cm<sup>2</sup> CD_2 target + 5.4 mg/cm<sup>2</sup> CH_2 target$ 

J. Lois Fuentes PhD thesis (U. Santiago de Compostella)







### ✓ Study of the <sup>19</sup>N(d,<sup>3</sup>He) reaction (2020-2021-2022)

do / dΩ (mb/sr

do / dΩ (mb/sr)

10

<sup>19</sup>N at 30A MeV in 1 bar  $D_2(90\%) + iC_4H_{10}(10\%) \rightarrow Equivalent 11 mg/cm^2 CD_2 target + 5.4 mg/cm^2 CH_2 target$ 

E<sub>x</sub> = 1.35 MeV

J. Lois Fuentes PhD thesis (U. Santiago de Compostella)

 $-\ell = 0$ 





Center of mass angular coverage limited by:

 $\rightarrow$  Backward cm angles: Si thickness

 $\rightarrow$  Forward cm angles: Si trigger: delta electrons (inherent to the use of "high energy" beams) systematically trigger lots of pads (the gain is set high enough to see "high energy" light particles)

→ Use « mixed gain » pad plane (GET eletronics feature) : 2/3rd of the pad plane in "low gain" configuration (i.e. transparent to deltas)
+ last 3rd with high gain (tracking of "high energy" light particles)



### Summary



 $\checkmark$  Resonant scattering : Ecm resolution dominated by the angular straggling in the gas

- $\rightarrow$  Optimized with pure H<sub>2</sub> gas (proton scattering)
- $\rightarrow$  New setup for "low energy" beams ongoing
- $\rightarrow$  Technical development for high intensity/heavy beams
- ✓ Implantation / decay : Tested for 3 different experiments:
- $\rightarrow$  OK for lifetimes > ~ 100 ns.
- $\rightarrow$  OK for small branching ratio (no beta background)
- $\rightarrow$  OK for multiparticle tracking
- $\checkmark$  Transfer reactions : thick target without loss of resolution
- $\rightarrow$  (d,<sup>3</sup>He) reaction study with few 10<sup>4</sup> pps
- $\rightarrow$  Plans to increase the c.m. angular coverage



### **ACTAR TPC Collaboration**



















