

Radioactive ion beams from SPIRAL1: status, limitations and development

Pierre Chauveau

Outline

Introduction : SPIRAL1

- I. Beam production : sources
- II. Charge breeding and acceleration

III. Beam purity

Conclusion

Status

What are the limits ?

How are we improving it / How could we improve it ?

Introduction - SPIRAL SPIRAL1

• New target Ion Source Systems (FEBIAD)

• The charge breeder

• CIME

SPIRAL1 modes

L. Maunoury *et al*, 2018 *JINST* **13** C12022

- a) 1+ shooting through, for identification, low energy (10-20 keV) physics in LIRAT and soon, low energy (2 MeV/A) postacceleration of very ligh ions
- b) N+ shooting through for post-acceleration (up to 24 MeV/A)
- c) 1+/N+ for post-acceleration (up to 24 MeV/A)
- d) SP1CB as a stable source for postacceleration (up to 24 MeV/A), for beam tuning or experiments with stable beams

- fragmentation cross-section
- diffusion/effusion time (refractory materials/short half-lives)
- ionization efficiency
- operational issues (stability, resilience)

Nanogan III

Objective: production of radioactive gaseous ions

- 87 tests/experiments with radioactive beams since 2001
- Beams of He(6,8), O(14,15,19-21), F(17,18,20,21), Ne(17- 19,23-27), Cl(32), Ar(31-35,41,43-46), Kr(71-77,79,81m).

FEBIAD

Objective: production of radioactive metalic ions

- 11 tests/experiments with radioactive beams
- FEBIAD TISSes have received 36Ar (2013,2019,2022), 20Ne (2018), 40Ca (2018,2019), 48Ca (2021), 84Kr (2022) and 50Cr (2023)
- 2 post accelerated beams: $38mK$ (2019), $47K$ (2021)
- 90+ radioactive isotopes/isomers **seen**, including around 60 at postaccelerable intensities (>1E5pps).

Features

- Efficient: routinely ≈ 20% on Ar
- Resilient: a 15 days endurance test showed no loss in performance
- Repeatable: comparable results and source behavior between 2 **TISS**

Latest test (⁵⁰Cr beam)

⁴⁸Cr rate ok (1.2E4pps/W) but very slow release (46min) at low beam power (30W)

MonoNaKe (slide credit P. Jardin)

Objective: production of radioactive alkali ions

- *In-target production by target and beam fragmentation*
- *Ionization by hot surface*

First on-line test with a Pt ionizer:

 8 Li⁺ rate = 2,2.10⁴ pps (or AIT efficiency~10⁻⁵

for 830 W of primary beam), to be compared to AIT efficiency of 0,05 obtained in 2007 with a carbon ionizer. Two points to analyse :

- *Transport in the beam line (results obtained in 20 minutes after the first ion was observed)*
- *Condensation of Li? at the exit of the tube observed during the off-line test*

Pt and C ionizer will be compared during an off-line test planned in February and March 2024.

TULIP (slide credit P. Jardin)

Objective: production of neutron deficient short-lived isotopes

In-target production by fusion-evaporation Short atom-to-ion transformation time

Final objective: production of metallic ions around ¹⁰⁰Sn

Next steps:

- coupling the TULIP cavity to a FEBIAD ion source. Test planned by end of 2023
- Implementation of a rotating target (production x 7).
- On-line production test of metallic ions around ¹⁰⁰Sn
- Application of the principle to the production of other elements

Expériences/Tests en radioactif à SPIRAL

Expériences/Tests en radioactif à SPIRAL

Developments

- MonoNaKe-Pt
- Fe-Co-Ni beams (hot target)
- New Target(s) + $12C$ beam
- Molecular extraction
- Tulip-FEBIAD

Master Projet Ions radioactifs 1 PhD + 1 Postdoc

Limitations

- primary beam power
	- fragmentation cross-section $12C$ on new target(s)
- diffusion/effusion time (refractory materials/short half-lives) -> Target heating, TULIP, Molecular extraction
- ionization efficiency -> MonoNaKe-Pt, FEBIAD source heating, target outgasing
- operational issues (stability, resilience) -> modifications to keep the insulators cold

Acceleration

Charge breeding status

 $=$ $/$

L. Maunoury et al, Journal of Physics: Conference Series 2244 (2022) 012066

The charge breeder works Total efficiency >70%

Charge state efficiency 5-20% depending on Z

A selection -> Isobaric contaminants

• Z selection – gaz (Nanogan)

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)
- Z selection molecules (reactive gaz injection)

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)
- Z selection molecules (reactive gaz injection)
- Isobar separation in CIME (best resolution 2.10⁴)

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)
- Z selection molecules (reactive gaz injection)
- Isobar separation in CIME (best resolution 2.10⁴)
- Full stripping (n-defficient, high energy, Z<28)

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)
- Z selection molecules (reactive gaz injection)
- Isobar separation in CIME (best resolution 2.10⁴)
- Full stripping (n-defficient, high energy, Z<28)
- Partial stripping : limited

A selection -> Isobaric contaminants

- Z selection gaz (Nanogan)
- Z selection alkali (FEBIAD/MonoNaKe)
- Z selection molecules (reactive gaz injection)
- Isobar separation in CIME (best resolution 2.10⁴)
- Full stripping (n-defficient, high energy, Z<28)
- Partial stripping : limited

Considers purity only!

Conclusion on beam development

Workshop Targets - Ions Sources

 \sim

laboratoire commun CEA/DRF

Where to find the informations

https://u.ganil-spiral2.eu/chartbeams/

Thank you for your attention!

Nuclear astrophysics

 $55Co(d,p)$ and $57Ni(d,p)$

⁵⁹Cu ⁵⁶Ni, ⁵⁷Cu (³He,dy)

Backup – Beam development

Logic of beams development:

Type I X-ray bursts

⁵⁹Fe,⁸⁵Kr,⁷⁹Se (d,p) <-- surrogate > massive stars

- Accepted proposal/Endorsed LoI
- Probing the community (LoI WS 2016 / WS 2023 / discussions with physicists / what we know we can do)

Summary of the perspectives for nuclear physics at GANIL

 $Z=50$

Another important ingredient:

shape

--> structure & reaction theory

Deformation &

Shape coexistence at N~Z

8Sr(3He,ny)80Sr

Shopping list SPIRAL1

• ⁶He

Specific beam development

- 8,9,11Li
- $10,12$ Be
- $10,11C$
- ¹⁷F
- $23Ne$
- ⁴³Ti
- $46Cr$ • ⁵⁰Mn

• 55_{Co} • 56,57Ni

•

Broadband beam development

• $57,59$ Cu

⁵⁹Fe

- ⁶⁰Zn
- ⁷⁹Se
- 73,75,77**Rr**
- $73,74,75,76,77$ Kr
- 72,73,74,75,76Sr

Backup - The upgrades on the FEBIAD

Poster ICIS V. Bosquet

16 mm holes in slider

Insulator were the main point of failure.

- Increasing the size of the openings
- Pulling the insulators far from the hot anode

Progress in resilience and reliability

- 3 months in SPIRAL1
- 3 Machine study (2 radioactive + 1 stable)
- 10+ heating cycles
- **Efficient:** ⁴⁰Ar Efficiency up to 23%
- **Resilient:** 2 days of irradiation, 15 days at 20% ⁴⁰Ar efficiency and 10+ heating cycles without loss of performance
- **Stable over time :** same results 3 months appart
- Reliable : same results on test bench and SPIRAL and between 2 TISSes

Backup - MonoNaKe Observations during the off-line test

Backup - TULIP (slide credit P. Jardin)

Proof of principle: production of ⁷⁴⁻⁷⁸Rb⁺ ions

Objective: production of neutron deficient short-lived isotopes

In-target production by fusion-evaporation Short atom-to-ion transformation time

Last On-line test in July 23

- 20 Ne $@$ 4,5 MeV/A -> nat Ni
- ^{74 to 78}Rb⁺ observed
- Rates up to few $10⁵$ pps
- TISS 3 days under irradiation without damage
- Data under analysis

Backup - TULIP

Objective: production of neutron deficient short-lived isotopes

Data currently under analysis

Backup - TULIP

Final objective : production of metallic ions around ¹⁰⁰Sn

Next steps:

- coupling the TULIP cavity to a FEBIAD ion source. Test planned by end of 2023
- Implementation of a rotating target (production x 7). Test planned by 2d semester of 2023
- On-line production test of metallic ions around ¹⁰⁰Sn. When ⁵⁰Cr beam available
- Application of the principle to the production of other elements