

Marlon Barbero, Arnaud Duperrin

ATLAS France CAF - ATLAS France users meeting 21st November 2023 <u>https://indico.in2p3.fr/event/30149/</u>

CPPM Team

- Composition of the team
 - team: 4 EC, 10 CNRS, 1 IR Computing, 7 PhD (1 cotutelle), 2 postdocs
 - analyses/activities
 - Di-Higgs boson: transition of efforts to di-Higgs analyses
 - HH \rightarrow bbyy: finalization full Run 2 BSM interpretation in X \rightarrow SH \rightarrow bbyy (1 PhD), starting Run 3 SH (1 PhD) and ZH \rightarrow bbyy measurement
 - HH \rightarrow bb $\tau\tau$: new effort in link with ANR Dive (1 PhD, 1 postdoc)
 - \rightarrow T. Strebler appointed HH Framework coordinator (with Louis D'Eramo)
 - other analyses: H++ multilepton, SUSY RPV multi-bjet, ttHML

• Involvement in computing

• Local T2 CPPM: 1 IR (0.5 FTE - Edith Knoops) + 1 CNRS (0.05 FTE - A.D.) + help from an engineer from computing service (Carlos Carranza) + collaboration with LHCb (Andrei Tsaregorodtsev)

• Involvement in software

- Run 3 pixel software
- Releases: MC production, reconstruction, validation, git merge request reviewer
- CP (Run 3 and Run 4): trigger, b-jets, Egamma, tracking

CPPM in categories "Software" or "Analysis support" or "Trigger"

from ATLAS OTP Institution Report - 2023 - Class 1, Class 2, Class 3 (x2 for many activities since only field for first semester atm)

First Name	Last Name	Activity	<u>System</u>	<u>Task</u>	Alloc
Elemer	Nagy	Trigger	General Tasks	Bjet Software and Performance	0.60
Thomas	Strebler	Computing/Software	ID gen	Common Tracking Software	0.20
Jozsef	Toth	Computing/Software	General Tasks	Validation of software release	0.20
Fares	Djama	Computing/Software	PIXEL	Software Development/Maintenance and Physics Performance	0.15
Grigore	Tarna	Analysis Support	General Tasks	Performance Studies - Egamma	0.15
Lorenzo	Feligioni	Trigger	General Tasks	Bjet Software and Performance	0.10
Thomas	Strebler	Analysis Support	General Tasks	Performance Studies - Flavour Tagging	0.10
Thomas	Strebler	Computing/Software	General Tasks	GIT merge request review, Level 1	0.10
Thomas	Strebler	Computing/Software	General Tasks	Reconstruction	0.10
Thomas	Strebler	Computing/Software	Upgrade	ITK - Performance Studies	0.10
Timothee	Theveneaux-Pelzer	Analysis Support	General Tasks	Generator Software	0.10
Arnaud	Duperrin	Analysis Support	General Tasks	Internal Software	0.08
Thomas	Strebler	Analysis Support	General Tasks	Performance Studies - Tracking CP	0.05
Thomas	Strebler	Computing/Software	General Tasks	GIT merge request review, Level 2	0.05
Arnaud	Duperrin	Computing/Software	General Tasks	Reconstruction	0.03
					2.11

Computing resources in 2023-2024

- Grid resources Tier 2-ATLAS pledge 2024
 - Storage = 2 200 TB (2200 TB pledged in 2023 → +0%)
 - **Computing** = 24 000 HS06 (24k HS06 pledged in $2023 \rightarrow +0\%$)

- \Rightarrow due to lack of funding visibility, **T2 pledged resources were not increased in past years**
 - + problematic external low network connection (limited to 10 Gb/s... often saturating 100 Gb/s in 2024 ??)
 - + cost of electricity etc.
- How to finance our T2 in future ? (CPER is over)
- CPPM lab direction (Cristi) supports the development of the T2 grid infrastructures for the new protocol
- Several engineers from computing services involved in T2 infrastructure will retire in a near future
- Other "grid" resources (but non pledged resources)
 Storage = 245 TB on LOCALGROUPDISK
- Other local (lab) resources (i.e. whatever is non grid)
 - 4 local-lab servers (263 TB, 204 cores) for ATLAS-CPPM activities (2 have expired warranty)
 - 1 new "small" server in 2023 for trigger NN LAr activities (AIDAQ)
 - CPPM has some GPU for developments/tests (not prod) shared among groups (not used by Atlas this year)
 - moving towards a cloud computing model at CPPM (i.e. no more local group servers) to mutualize computing resources among groups

Example of Analysis and needs (1)

SH→bbyy : based on full Run 2, release 21 (finalisation, ATLAS circulation soon) → we contribute to all analysis steps (MxAOD prod to limits) → model:

- DAOD HIGGSD1→ MxAOD (data + MC nominal + MC syst)
 - Mini MxAOD are smaller calibrated DAOD produced by SH analysis group using the H $\rightarrow\gamma\gamma$ Higgs analysis framework
 - 10 TB for MC, 0.5 TB for signal, 0.25 TB
 - Produced on the GRID and stored on local group disks from institute + eos
 - time to process: two weeks (mainly for the syst prod) by a group of 5 people in // but can take up to one month for full completion
- MxAOD \rightarrow ntuples (300 GB)
 - CERN batch
 - Ntuples are stored directly on eos except for the yy+jets systematics samples which are too large and had to be stored on local grid institute disks
 - time to process: 15 minutes for nominal, can take up to a few hours for systematics.
- ntuples \rightarrow fits (3 GB)
 - PNN histograms are produced on CERN batch and stored in eos
 - Fits are performed on afs using Condor to speed them up for the ~200 points (only available on afs)

→ Good points/Difficulties/Needs/Expectation:

• Software strategy to be revisited for Run 3 in link to have a general HH Framework for all final states

Example of Analysis and needs (2)

- Analysis Run 2 + 3 bbtautau (new involvement since Spring 2023)
 → software and computing contribution:
 - EasyJet framework development + maintenance for ntuple production
- \rightarrow **model**: DAOD_PHYSLITE \rightarrow ntuple
 - · Post-processing steps on ntuple anticipated but TBD
 - Full MC20 + MC23 + Data datasets to be ultimately processed
- \rightarrow time to process: Unknown
- → where this analysis is mostly performed: Grid + local
- \rightarrow good points/difficulties/needs/expectations:
 - New common framework shared between all HH analyses
 - · Central support from HH group, in link with AMG
 - · Shared central developments + consistency in view of future combinations

Example of Analysis and needs (3)

• b-tagging ITk

- S&C contributions: all steps from prod to performance
- Model:
 - FTAG1 derivation samples \rightarrow HF5 ntuples using the FTAG framework (training dataset dumper)
 - Training Graph Neural using the Salt FTAG framework
 - Evaluate the performance of the trained algorithm in Umami or Puma (note: Root disappeared from whole chain...)
- Size: 50M ttbar semilep + 50M ttbar dilep + 30M Z'
- **Time to process**: one week for FTAG1 (few times per year), days for HF5, days for training, few hours for performance
- Where:
 - on the grid (FTAG1, HF5), GPU for optimal trainings (lxplus or other local cluster)
 - Storage of HF5 on T2 local group disk or local
 - Analysis on local servers
- **Comments**: all process has to be repeated several times per year and the software environment is evolving (but well documented and maintained by FTAG group)

Conclusion

- CPPM team:
 - ~6 physicists (not full time) + ~3 PhD students + 1 postdoc **involved in physics analyses**
 - **no more full time informatic IT support** since Manu's departure in 2020 (Edith helping at 50% but mainly for the T2 Grid activities)
- Computing:
 - T2 CPPM: running smoothly but uncertainty on financing + electricity cost + RH
- Software:
 - software involvement steadily decreasing
 - ramping up on HH analyses for Run 3&4 as main CPPM topic
 - Ex software: HH Framework coordinator
 - Ex ML:
 - o b-tagging for Run 4 based on GNNs using new ITk detector
 - $\circ~$ H ${\rightarrow}\tau\tau$ boosted tagging with GN2X

