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Approach of this talk

Will not give a comprehensive overview of techniques that have developed, nor of the striking the results that have been
obtained. These are described in detail in other talks, e.g.:

- Charline Rougier at Connecting the Dots 2022, Princeton (clickable link)

- Xiangyang Yu at CHEP 2023, Norfolk (clickable link)

- Sylvain Caillou at CHEP 2023, Norfolk (clickable link)

- Heberth Torres at Connecting the Dots 2023, Toulouse (clickable link)

In instead, will try to describe our work in the bigger context.
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https://indico.cern.ch/event/1103637/contributions/4821831/
https://indico.jlab.org/event/459/contributions/11414/
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https://indico.cern.ch/event/1252748/contributions/5576737/
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http://cds.cern.ch/record/2802918

Predictions are difficult, especially when they
COnCE rn the fUtU re (George Bernard Shaw, Winston Churchill or Niels Bohr)

PARTNERS ~ FOUNDRY R @ eveusn Q, search Intel.com

What Future Processors Will Look
Like
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Shares

AMD CTO Mark Papermaster talks about why heterogeneous architectures wi
be needed to achieve improvements in PPA.

JULY 13TH, 2022 - BY: ED SPERLING /i/li
[

Mark Papermaster, CTO at AMD, sat down with Semiconductor Engineering to talk about
architectural changes that are required as the benefits of scaling decrease, including
chiplets, new standards for heterogeneous integration, and different types of memory.
What follows are excerpts of that conversation.

SE: What does a processor look like in five years? Is it a bunch of chipsin a
package? Is it a CPU and FPGA and GPU?

Papermaster: There is no question that the future of processing is heterogeneous.
It's multiple compute engines working in tandem, because massive data and
graphics processing is needed everywhere. It's needed in
data centers and in PCs, and the explosion of data from the
Internet of Things requires analysis and visualization across
that whole food chain. There clearly is a requirement of
domain-specific architectures. The CPU is fantastic for

general processing, and there are a gazillion applications
that run on x86 and on Arm. For more specialized graphics and vector processing,
FPGAs or ASICs can provide very specialized computing. We saw this future at AMD
well over a decade ago, and we pointed our R&D efforts toward this future. We've
been in mass production for years with an APU that combines the CPU and GPU
for our client and embedded markets, and now we're bringing that APU into the
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RODUCTS SUPPORT SOLUTIONS DEVELOPERS

y Data Center GPUs Are Essential to Innovatio

Why Data Center GPUs Are Essential to Innovation

Data center graphics processing units (GPUs) are discrete accelerators
that enable and enhance emerging technologies such as artificial
intelligence (Al), rendering, analytics, and simulation/modeling.

GPUs vs. CPUs 8
WhyData Center,GRUS? To support Al, analytics, 3D rendering, and other advanced
Use Cases workloads, GPUs must play an expanded role in your data

s Soittons center environment. By augmenting CPUs with powerful
parallel processing capabilities, data center GPUs help speed
outcomes and accelerate innovation.

Key Takeaways

* Data center GPUs are used
alongside CPUs to meet the
elevated computational demands

CTO = Chief Technical Officer

PPA = Power, performance, area

| don’t have a crystal ball either to predict the future.

But | think that, as a field, we must be able to
run our software on the GPU-heavy heterogeneous
architectures that may well be the future.
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Tochnology

CPUs are no longer the centre of the data

centre

< e driving growth for Interface Cards
(SmartNICs), Data Processing Units (DPUs), and Infrastructure Processing Units
(1PUS) are shifting the balance of power in the data centre. ABI Research expects this

market to grow significantly, driven by the emergence of highly specialised workloads
such as A/ ML, loT, and 5G infrastructure,

Foodpanda revolutionises food delivery with

Cloud to help realise smarter Al-powered digital
twins.

PodChats for FutureloT: Smarter ways for
modernising urban development
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PR-1 First evaluation of effort needed to deliver on HL-LHC milestones Q2 2022
PR-2 |<__|HL-LHC Computing TDR
- - omputing
R&D projects targeting Run 4 (“Run 4 projects) define scope and
potential impact of their demonstrators, and a program of work with
2.1 |effort and risk estimates to the end of Phase 2. Q4 2022
Define release, datasets and platforms to be used to evaluate Run 4
2.2 |performance impact of demonstrators Q12024
2.3 |Run 4 projects release their demonstrators Q2 2024
Run 4 projects evaluate the performance impact of their R&D
demonstrators and estimate the effort needed to develop fully functional
2.4 |prototypes Q2 2024
PR-3 Run 4 Release Q2 2027
e— e —
_—TRun 4 projects release fully functional prototypes, estimate risks and
M\effort needed to bring to production quality Q2 2026 >
f
3.2 |Run 4 developers Tat Q3 2026
3.3 |Run 4 Feature Freeze Q2 2027
PR-4 Ready for Run 4 Data Taking Q2 2029
4.1 |Run 4 projects demonstrate required functionality in release Q3 2026
4.2 |Run 4 release validated Q1 2029
CAF users meeting, November 21st 2023 5
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A few words on SIMD and GPUs

Figure taken from the

CUDA C programming guide. Core COn Core Con
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SIMD = single instruction, multiple data
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https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf

Figure taken from the
CUDA C programming guide.

i= Cache prefetching

A few words on SIMD and GPUs
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Article  Talk

From Wikipedia, the free encyclopedia

Cache prefetching is a technique used by computer processors to boost execution

3 1 language v /

Tools v
CPUs and the memory chips that they control spend a big part
of their electricity to move around data that are never used.

SIMD = single instruction, multiple data

performance by fetching instructions or data from their original storage in slower
memory to a faster local memory before it is actually needed (hence the term 'prefetch’).

Jan Stark
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https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf

Consequence of SIMD: warp divergence in GPUs

X; Y;
if (threadIidx.x < 4) {
A, G
B; O
} else { %
b §- g
Y; —

}
Z
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Consequence of SIMD: warp divergence in GPUs

X; Y;
if (threadIidx.x < 4) {
Aj
B;
} else
X3
Y;

Q
on
—
Q
>
-
o
O
Q
—

N

And this is just one “if’. Imagine nested if statements ... the GPU quickly becomes idle.

Need to learn to design algorithms (almost) without if statements ... otherwise GPUs are useless.

Jan Stark CAF users meeting, November 21st 2023 9



A few words on GPU programming

Taken from the
CUDA C
programming guide.

5.1.  Overall Performance Optimization
Strategies

Performance optimization revolves around three basic strategies:
» Maximize parallel execution to achieve maximum utilization;
» Optimize memory usage to achieve maximum memory throughput;

» Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an application
depends on the performance limiters for that portion; optimizing instruction usage of a kernel
that is mostly limited by memory accesses will not yield any significant performance gain,

for example. Optimization efforts should therefore be constantly directed by measuring and
monitoring the performance limiters, for example using the CUDA profiler. Also, comparing
the floating-point operation throughput or memory throughput - whichever makes more
sense - of a particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

H.2. Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as much
parallelism as possible and efficiently maps this parallelism to the various components of the
system to keep them busy most of the time.

Jan Stark
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A few words on GPU programming

Taken from the
CUDA C
programming guide.

5.1.  Overall Performance Optimization
Strategies

Performance optimization revolves around three basic strategies:

» Maximize parallel execution to achieve maximum utilization;

» Optimize memory usage to achieve maximum memory throughput;

» Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an application
depends on the performance limiters for that portion; optimizing instruction usage of a kernel
that is mostly limited by memory accesses will not yield any significant performance gain,

for example. Optimization efforts should therefore be constantly directed by measuring and
monitoring the performance limiters, for example using the CUDA profiler. Also, comparing
the floating-point operation throughput or memory throughput - whichever makes more
sense - of a particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

H.2. Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as much
parallelism as possible and efficiently maps this parallelism to the various components of the

system to keep them busy most of the time.
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An obsolete/cheap gaming GPU like the RTX 2070

(an expensive A100 datacentre GPU) can run ~1k threads
(~30k threads) in parallel. In addition, they have powerful
mechanisms to switch from one thread to another to avoid
waiting for things (e.g. memory access).

= Need to break down our algorithms into tens to hundreds
of thousands of simple sub-tasks that can be executed using
the SIMD paradigm. VERY HARD in experimental particle
physics.
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A few words on GPU programming

Taken from the
CUDA C
programming guide.

5.1.  Overall Performance Optimization

Strategies

Performance optimization revolves around three basic strategies:

» Maximize parallel execution to achieve maximum utilization;

» Optimize memory usage to achieve maximum memory throughput;

» Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an application
depends on the performance limiters for that portion; optimizing instruction usage of a kernel
that is mostly limited by memory accesses will not yield any significant performance gain,

for example. Optimization efforts should therefore be constantly directed by measuring and
monitoring the performance limiters, for example using the CUDA profiler. Also, comparing

the floating-point operation throughput or memory throughput - whichever makes more
sense - of a particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

H.2. Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as much
parallelism as possible and efficiently maps this parallelism to the various components of the

system to keep them busy most of the time.
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Whenever we talk about GPU usage, we should quote
numbers for GPU utilisation, memory bus efficiency, etc.
This is the nerf de la guerre in GPU computing.

If people (like the traccc demonstrator) don’t give the
numbers, then ask for them.

An obsolete/cheap gaming GPU like the RTX 2070

(an expensive A100 datacentre GPU) can run ~1k threads
(~30k threads) in parallel. In addition, they have powerful
mechanisms to switch from one thread to another to avoid
waiting for things (e.g. memory access).

= Need to break down our algorithms into tens to hundreds
of thousands of simple sub-tasks that can be executed using
the SIMD paradigm. VERY HARD in experimental particle
physics.
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A few words on GPU programming

Example of an algorithm that runs efficiently on GPUs:
matrix operations on large matrices (e.g. A*B = C)

A B C

Neural networks can be expressed in terms of matrix operations.

Example of an algorithm that does not run efficiently on GPUs:
Combinatorial Kalman filtering in a detector with a complex geometry
and a non-zero magnetic field.

Jan Stark CAF users meeting, November 21st 2023 13



A few words on GPU programming

Example of an algorithm that runs efficiently on GPUs:
matrix operations on large matrices (e.g. A*B = C)

A B C

Neural networks can be expressed in terms of matrix operations.

Example of an algorithm that does not run efficiently on GPUs:
Combinatorial Kalman filtering in a detector with a complex geometry
and a non-zero magnetic field.

Simply knowing on which detector module to look for
the next hit Is a quagmire of “if” statements.
Then do this for the next ~15 layers in ITk ....

Jan Stark CAF users meeting, November 21st 2023 14



Simple detectors, simple algorithms

Computing and Software for Big Science (2020) 4:7
https://doi.org/10.1007/541781-020-00039-7
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s \
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Abstract

‘We describe a fully GPU-based implementation of the first level trigger for the upgrade of the LHCb detector, due to start data Locator \
taking in 2021. We d that our impl, ion, named Allen, can process the 40 Tbit/s data rate of the upgraded

LHCb detector and perform a wide variety of pattern recognition tasks. These include finding the trajectories of charged e - DANCICE SCRCE RCRUNEE RN

particles, finding proton—proton collision points, identifying particles as hadrons or muons, and finding the displaced decay
vertices of long-lived particles. We further demonstrate that Allen can be implemented in around 500 scientific or consumer
GPU cards, that it is not I/O bound, and can be operated at the full LHC collision rate of 30 MHz. Allen is the first complete
high-throughput GPU trigger proposed for a HEP experiment.

Keywords GPU - Real-time data selection - Trigger - LHCb
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Simple detectors, simple algorithms

I 1 m |
I 1
390 mrad

cross section at y=0

70 mrad

15 mrad

|nteract|on region showing
2XOpearm = ~12.6 cmM

66 mm
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Velo Detector

The Velo detector consists of 26 planes of silicon pixel
sensors placed around the interaction region. Its main
purpose lies in reconstructing the pp collisions (primary
vertices or PVs) and in creating seed tracks to be further
propagated through the other LHCb detectors. The Velo
track reconstruction is fully described in an earlier publi-
cation [17] and is recapped here for convenience.

The reconstruction begins by grouping measurements
caused by the passage of a particle within each silicon
plane into clusters, an example of a more general process
known as connected component labeling. Allen uses a
clustering algorithm employing bit masks, which searches
for clusters locally in small regions. Every region can be
treated independently, allowing for parallel processing.

Straight-line tracks are reconstructed by first forming
seeds of three hits from consecutive layers (“triplets”),
and then extending these to the other layers in parallel.
We exploit the fact that prompt particles produced in pp
collisions traverse the detector in lines of constant ¢ angle
(within a cylindrical coordinate system where the cylinder
axis coincides with the LHC beamline) and sort hits on
every layer by ¢ for fast look-up when combining hits to
tracks.
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On fancy detectors

— T T T T —— In this region, it is relatively clear in which direction to look
E 1400 —ATLAS Simulation Preliminary —/ for the next hit.
= " ITk Layout: 23-00-03 7
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800 —
600 —
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209—7 - T] — 4.0 _:
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0 1500 2000 2500 3000 3500
. . z [mm]
luminous region:
-200<z<200 , the direction is less clear.
atr=0 In addition, this is where the density of hits is largest.
Jan Stark CAF users meeting, November 21st 2023
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Graph Neural Networks (GNN) CERN

September/October 2021 Reporting on international high-energy physics

Data from HEP detectors in general,

and tracking detectors in particular, are sparse. ARTIFICIAL
INTELLIGENCE

ATLAS ITk tracker at HL-LHC:
9 billion channels
“only” 300k hits in one given event

The detectors are inhomogeneous
(combine different technologies)
and have complex geometry.

Such data are hard to represent as images.

Graphs are a natural tools to represent such data.
GNNs are neural networks that operate on
graphs of any topology and complexity.

Emergence

The most stable tetraquark yet

Jan Stark CAF users meeting, November 21st 2023



Tracking based on GNNs

Charged particles leave hits in the Represent the data using a Goal:
detector graph classify the edges of the graph
High classification

score
=> high probability
that the edge is part of
a track

Low classification score
=> low probability that
the edge is part of a
track

B0

One node of the graph = one hit in the detector

Connect two nodes using an edge
if “it seems possible” that the two hits
are two (consecutive) hits on a track

Jan Stark CAF users meeting, November 21st 2023 19



Tracking based on GNNs

Graph Neural . % 4
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. v; ® 7 ; 089 & 0.89 ¥
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Module ,
Miap o + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph
Construction Labeling Segmentation
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Slide from
Heberth
at CTD2023

GNN4ITk

Edge labeling with GNN

GNN config:

- 2 layers per MLP
- 128D latent space

- 8 message-passing

New w.r.t. CTD 2022:

- Non-recurrent
interaction network

- Doing batch norm

- Heterogeneous data

Jan Stark

MLP

Encoder
Nnodes[rs' (p ] ﬁ
MLP

] = Edge
Encoder
\//

v

An Ap Ar ...

Nedges

= H,=> ‘ MLP Edge

o Graph Neural
K # Network
A .. o g
S [}
R & '
F -
p » .,; ®
Graph Edge Edge Scores
Labeling

Number of message-passing

MLP MLP MLP Edges score

MLP Node Edge
N )
=150 e = i = e |

Block

—

v

Interaction
Network

v

Embeds the features into
a D-dimensional space parameters

Transforms the latent features
of each edge into a classification
score for each edge

Learn geometric pattern of tracks
(from DeepMind)

Charline Rougier at CTD 2022
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CTD2022

Efficiency and purity vs (7, 7)

Heterogeneous Data + Extended GNN

1400

T 1400 ———— > = C —— T T ! >
£ - ATLAS Simulation Preliminary g £ - " ATLAS Simulation Prellmlnary s S
= 1200__ Vs = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) p,>1GeV :::: = 1200__ s = 14 TeV, ff, (1) = 200, primaries (tf and soft interactions) p,>1GeV - g
|_  using Module Map [ [ using Module Map, Total per-edge efficiency over the detector : 98.2% ] 0.98 () e . n[rue>[reshold
1000~ $ 10001 El efficiency =
C i 5} C 1 N @ n
800 - - st} 5 800 il i1l i foes 2 true
- i 3 - l | . 3
- = = & 0.95 = L.
600f- , z 600/ - oot Z * Global efficiency of ~98%
400/ s a0~ ! ! o8 Efficiency more uniform in
SRR e T T R e T TV BARREL regi
200:-'1llllllllluum—unnlll e R R Ry m— T TR AN N I | Y region
E L e SR N RNV 1T AN R R S :
O P T ‘IIIIIII-*-III llr I' s T e I"'1I|Il H-IH '."f'.". N . 09
—19000 -2000 21000 0 1 000 —8000 -2000 -1000 0 1000 2000 3000
z [mm]
.51400_ ——— , — 1 > 'E1400_'"‘I'.""I"".'l"' T T = 1 >
£ - ATLAS Slmulatlon Prellmlnary . = £ - ATLAS Simulation Preliminary ] 3 . Pryetreshold
= 1200__ Vs =14 TeV, tf, (u) = 200, pnmanes(tfandsoﬂlmeracﬂons)pT>1GeV ] 09 g = 1200:_ 15 =14 TV, f, (1) = 200, primaries (if and soft interactions) pr>1GQV —: 09 % purlty ==
1000__ using Module Map ] E _g 1000:— using Module Map, Total per-edge purity over the detector : 92.6% —: ? ntrue>treshold + nfake>treshold
E @ i1 ] g E o . TR R % &
soob- | | | igm_.l..m,...m..m,,.‘ IR z s00F- | | ~1 111 94, £ < Significantimprovement of
= | | . (G} - ! ’ O - .
soo]- l l ii : u.i ‘ l ‘ E o00] ‘ || l HE purity in the STRIP BARREL
o ] = ] —06 §
400E I . S . I - 400? 1 O LS e 1 ST LR F region from ~40% to ~80%
R e o] | LRI B B ] :
C ] i U W TR Xy ] o113 T R T R O ; ~0QRJ0
2000 ,t, IIIII'IIIIIH!‘I':'F’!'Il_ll‘!‘l:'l‘l“ll'I”IIIllllli I 20007 4 0 G H TG 4 Pttty b A TREE D06 T W * Global purltYOf 95%
E LT e L - i ‘-'-'.!.'.HHI!I!!===!!!!!!!:-h!»'; olal i ]
. L | ‘IIIIIII.*.IIIIHI’ LAl ‘ ; P PR S L | IR 04
$006" 2000 1000 0 1000 2000 3000 ~8000 ~ -2000  -1000 0 1000 2000 3000
z [mm] z [mm]
sylvain.caillou@I2it.in2p3.fr | CHEP2023 | Novel fully-heterogeneous GNN designs for track reconstruction at the HL-LHC | 9/13 m
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Slide from

" GNNAITK

Edge labeling with GNN

L

 Strip hits
O]

Some possible options:
' f
+ 6.42 mm

r

Wit ==+ Yol -+

Strip barrel:
"y rhlt, "n

Pixel:

Jan Stark

- y 7'012, -
rhlt, s .y rhlt, e
Other alternatives under study: hand-engineered edge features based on hit pair info, & heterogeneous GNN model

4
Double strip sensor planes in barrel module
Two strips fired by a particle in brown

Where did the particle hit the inner plane?

&
o
o
5
>
R
P&
i Default hits:
PN Poor 6, ~ 1-3 cm
H (was limiting GNN performance)
4’ '\
\i~ Outer plane
) Inner plane

(Heterogeneous data format)

Default as:sumption
¢ (Athena)
Problem addressed by passing info of the two individual strip clusters to the GNN; node features:

23
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Slide from
Heberth
at CTD2023

Tracking efficiency

iy 1 HPRpy | H -3 :
« Competitive “physics” efficiency _ 10(10%) fake tracks:
. Track candidates not matched to any particle]
(excluding electrons)
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Parton level

Tracking efficiency

Tracking inside jets "

o Competitive “physics” efficiency even in dense environment
(excluding electrons)
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Impact parameter resolution

« Given the good pixel hit content, good impact parameter resolution

Jan Stark
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8'" International CTD workshop

Université Paul Sabatier, Toulouse, France

https://indico.cern.ch/e/CTD2023 Local Organizing Committee
ctd2023-loc@|2it.in2p3.fr Catherine Biscarat (L2IT)

Sylvain Caillou (L2IT)
Jocelyne Gauthier (L2IT)

satellite event on Real time Tracking: Jan Stark (L21T)
triggering events with tracks (October 13™) oo U

International Advisory Committee

Alberto Annovi (INFN Pisa) Frank Gaede (DESY) David Lange (Princeton)

Paolo Calafiura (LBNL) Jose E. Garcia (IFIC Valencia) Salvador Marti (IFIC Valencia)
Giuseppe Cerati (FNAL) Maurice Garcia-Sciveres (LBNL) Fabrizio Palla (INFN Pisa)

Michel De Cian (EPFL) Vladimir Gligorov (LPNHE) David Rousseau (IJCLab)
Matthias Danninger (SFU) Heather Gray (UC Berkeley/LBNL) Andi Salzburger (CERN)

Markus Elsing (CERN) Phil Harris (MIT) Louise Skinnari (Northeastern U.)

Institut national T Université UNIVERSITE
de physique nucléaire de Toulouse OULOUSE Il
et de physique des particules , AUL SABATIER
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Talk at CTD2023 from LHCb/LPNHE

GNN-based pipeline for track finding in the Velo at LHCb

Allen: current HLT1,
classical algorithms on GPU

Extdvelo:
ML algorithm (GNN-based)
on GPU

Jan Stark

. ) -
- U N ®
J
Striplet > 032 Striplet > 036
Category Metric Allen Etx4velo Etx4velo ; ;
&2 = 0010 | dZy, = 0020 Evaluation with 5,000 events
Long, no electrons Efficiency Track matched to a
v" In acceptance - . 0 .
v Reconstructible in the velo | Clone rate p_artlcle if at Iea_St 70 /_° of its
v Reconstructible in the SciFi hits belong to this particle
v Not an electron Hit efficiency
Hit Purity AIIe_n algorithm described in
arXiv:2207.03936v2
Long electrons Efficiency
v' In acceptance . ..
v Reconstructible in the velo | Clone rate 2 different GNN trainings for
v Reconstructible in the SciFi d2 . = 0.010 and d2,, = 0.020
v Electron Hit efficiency
Hit purity .
— Long categories
Long, from strange Efficiency
v' In acceptance
v Reconstructible in the velo | Clone rate
Good proxy for displaced Hit efficiency
tracks i i Worse Better
Hit purity
X Ghost rate
link to talk

CAF users meeting, November 21st 2023
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https://indico.cern.ch/event/1252748/contributions/5521484/

Tracking based on GNNs

GNN4ITKdemoplans # & &
Fichier Edition Affichage Insertion Format Données Outils Extensions Aide

Recently detailed our schedule toward the TDR in Q3 of 2024.
We have the physics performance that we need for a demonstrator.

Moving a lot of focus on implementation aspects.

- full chain (from clusters to fitted tracks) on GPU,
without any intermediate transfers to/from the host

- use “GPU EDM” and track fit from ACTS/traccc

This domain (implementation) is new for many in our field

(in ATLAS and elsewhere). It is crucial that we coordinate

our activities with the LHCb colleagues at LPNHE,

our ACTS/ATLAS colleagues at IJCLab and the Reprises project.

Jan Stark CAF users meeting, November 21st 2023
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Paper

Request new (ITk 3.0.0) samples
Validate new samples

Single-particle performance
Track-by-track CKF Comparison
Resolution loss from singlet clusters
Robustness studies

Dense environment tracking

Large radius tracking

Inference on other physics processes

Perform initial timing study

Perform initial memory study

Regional tracking study

Quantization, Pruning, Distillation study
Module map GPU-ification

NN (GNN, metric learning, etc) optimization
Custom/fused kernels

Release CTD version of acorn, with trained models
Update acorn to latest Pytorch, Lightning, etc.

Add GPU ability to Docker Gitlab runner
Recipe/walkthrough on dumping objects
Recipe/walkthrough on training pipeline
Recipe/walkthrough on configuring GNN
Recipe/walkthrough on running Athena + IDPVM
Simple inference script for physics analysis

Move to athena 24, ITk layout 3.0.0

Create the Dump module in main branch --> ROOT file
Full chain test in athena

Onnx conversion of all models

Single-particle generalization

Singlet cluster model & training

Electron-targeted model & training

Low-pt model & training

Improved metric learning graph construction purity
Fine-tuned models for different channels

W ww s wWwNN

10

1

1
0.5
0.25
0.25
0.25
0.25
0.5

N NN

N NN DNNDN

October 24, 2023
October 24, 2023
December 24, 2023
October 24, 2023
October 24, 2023
January 24, 2024
November 15, 2023
December 15, 2023
December 15, 2023
January 15, 2024

October 24, 2023
October 24, 2023
October 24, 2023
October 24, 2023
October 24, 2023
October 24, 2023
February 15, 2024
February 15, 2024

October 24, 2023
October 24, 2023
November 14, 2023
October 24, 2023
October 31, 2023
November 7, 2023
November 14, 2023
November 21, 2023
October 24, 2023
November 12, 2023
November 12, 2023
January 1, 2024
November 14, 2023

October 24, 2023
October 24, 2023
October 24, 2023
January 15, 2024
March 15, 2024
October 24, 2023
December 15, 2023

29

March 24, 2024
December 24, 2023
January 24, 2024
December 24, 2023
January 24, 2024
March 24, 2024
March 15, 2024
March 15, 2024
March 15, 2024
April 14, 2024

May 15, 2024
December 15, 2023
December 15, 2023
January 24, 2024
February 24, 2024
January 24, 2024
May 15, 2024

May 15, 2024

February 13, 2024
November 14, 2023
December 14, 2023

November 7, 2023

October 31, 2023

November 7, 2023
November 14, 2023
November 21, 2023

November 7, 2023
December 12, 2023
December 12, 2023

February 13, 2024

January 14, 2024

May 15, 2024
December 24, 2023
December 24, 2023

March 15, 2024

May 15, 2024

December 24, 2023
February 15, 2024



Jan Stark

Additional material
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AISSAl conference on heterogeneous data in Toulouse — spring 2024

ERN

September/October 2021 Reporting on international high-energy physics

ARTIFICIAL
INTELLIGENCE

Emergence

The most stable tetraquark yet

All nodes are pink, regardless of their position in the detector (tracker, calorimeter,
muon detectors) ! Not only in this illustration, this reflects what is typically done in practice.

Ideally, nodes in different subdetectors would represent different types of measurements in
different subdetectors (3D hits in the tracking pixel detectors, 2D measurements in the
tracking strip detectors, energy deposits in the calorimeters, ...) and they would be shown in
different colours in illustrative figures as the one above.

Developments of models and techniques, initially driven by applications in particle physics,
could accelerate developments in this domain.

Subtopics:
- Heterogeneous GNN architectures.

- The next big thing in geometric deep learning ? Modelling complex systems requires going beyond graphs.
- Green Al is an integral part of this. Heterogeneous architectures will likely be run on

low-level reconstruction tasks like particle flow and track reconstruction, i.e. run on essentially every
event. This is where the big potential gains in energy savings are.

The definition of the contours of the conference is curently being finalised
- Spring 2024
- ~80 participants
- At the same beautiful venue right in the city centre as CTD 2023
(Le Village by CA and Flashback café, this has a start-up flair to it).
- With contributions from ANITI chairs
- Fix date before end of Nov. 2023



