

LISA Red Book: peering into millihertz gravitational waves

Quentin Baghi (APC) Assemblée Générale du GdR Ondes Gravitationnelles - 17 octobre 2023

Layout

1. Mission concept

2. Science objectives and related challenges

3. Towards the future

Part of the definition study report, or Red Book = summary of the work that has been undertaken on LISA mission definition phase

1. Mission concept

- Measures mHz gravitational waves [10⁻⁴, 1] Hz
- 3 spacecraft (S/C) forming a triangle with 2.5 x 10⁶ km arms
- Housing 6 test masses
- Network of laser interferometers
- 4.5 years of science observations with 82% duty cycle Earth × 10^{6}

50 Mkm - tradeoff

communication / Earth disturbance

1. Mission concept

— Target gravitational wave sources

U.

1. Mission concept

— Target gravitational wave sources

4

1. Mission concept

— Target gravitational wave sources

U.

- SO1: Study compact binary stars evolution and Galaxy structure

4

- SO1: Study compact binary stars evolution and Galaxy structure

SO1: Study compact binary stars evolution and Galaxy structure

- Most numerous sources ~ 10^7 with ~ 10^4 detectable

- Most of them are detached and interactive white dwarves → stellar remnants
- Unresolved sources form a confusion foreground

SO1: Study compact binary stars evolution and Galaxy structure

- Most numerous sources ~ 10^7 with ~ 10^4 detectable

- Most of them are detached and interactive white dwarves → stellar remnants
- Unresolved sources form a confusion foreground

SO1: Study compact binary stars evolution and Galaxy structure

- How do binary compact stars interact?

— How do they evolve?

GB sources detected by LISA + confusion foreground

Population of compact binaries in the Milky Way vs frequency

SO1: Study compact binary stars evolution and Galaxy structure

- How do binary compact stars interact?

- How do they evolve?

SO1: Study compact binary stars evolution and Galaxy structure

- How do binary compact stars interact?

- How do they evolve?

SO1: Study compact binary stars evolution and Galaxy structure

- What is the spatial distribution of ultra-compact binaries?
- How do they inform us about the structure of the Galaxy?

Geometric structure and stellar mass distribution of Galaxy

SO1: Study compact binary stars evolution and Galaxy structure

- This is a challenge for data analysis: tens of thousands of continuous, overlapping sources

- LISA will detects BHs mergers with $10^5 < M < 10^7$ solar masses
- Up to large redshifts: z = 15 and beyond
- Formidable tool to study the origin and evolution of BHs!

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

Simulated MBHB resulting from light seeds

Light seeds = result from gravitational collapse of first metal-free stars in early dark matter haloes (Carole Perigois's talk)

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

Measurement of MBH masses and redshifts

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

SO2: Trace the origin, growth and merger histories of massive black holes

— How did massive black holes form? What are their seeds?

SO2: Trace the origin, growth and merger histories of massive black holes

- How did massive black holes form? What are their seeds?

— What is the role of accretion?

- Can we identify the host galaxies of detected coalescences?
- Can we detect EM counterparts pre- and post merger? (Chi An Dong Páez's talk)

- Can we identify the host galaxies of detected coalescences?
- Can we detect EM counterparts pre- and post merger? (Chi An Dong Páez's talk)

- Can we identify the host galaxies of detected coalescences?
- Can we detect EM counterparts pre- and post merger? (Chi An Dong Páez's talk)

SO2: Trace the origin, growth and merger histories of massive black holes

- Can we identify the host galaxies of detected coalescences?
- Can we detect EM counterparts pre- and post merger? (Chi An Dong Páez's talk)

Example of a MBHB $10^5 < M < 10^6$ solar masses at z < 0.3

SO2: Trace the origin, growth and merger histories of massive black holes

- Source type mixing requires to develop a "global fit" approach (see Senwen Deng's talk)

Prototype pipelines results with LISA Data Challenges 2 data

[[]Littenberg & Cornish 2023]

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

- In which stellar environments do MBHs live?
- What are the spin & mass distributions of MBHs?

We can use extreme-mass ratio inspirals (EMRIs) with mass ratios $10^{-6} < q < 10^{-4}$

Starting at 3 mHz, takes 1 year to plunge = 10^5 waveform cycles

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

- LISA could detect EMRIs at typical z ~ 3

Starting at 3 mHz, takes 1 year to plunge = 10^5 waveform cycles

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

LISA could detect EMRIs at typical z ~ 3

Starting at 3 mHz, takes 1 year to plunge = 10^5 waveform cycles

 \rightarrow Probe astrophysical environments of **quiescent** massive black holes \rightarrow co-evolution with host galaxies

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

LISA could detect EMRIs at typical z ~ 3

Starting at 3 mHz, takes 1 year to plunge = 10^5 waveform cycles

→ Probe astrophysical environments of quiescent massive black holes → co-evolution with host galaxies
 → Measure cosmological parameters

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

- LISA could detect EMRIs at typical z ~ 3

Starting at 3 mHz, takes 1 year to plunge = 10^5 waveform cycles

- Probe astrophysical environments of **quiescent** massive black holes \rightarrow co-evolution with host galaxies
- → Measure cosmological parameters
- Test fundamental physics: test whether massive compact objects observed in the center of galaxies are spinning black holes described by GR's Kerr metric

- Challenge for data analysis: many harmonics and cycles, complicated waveform
- Challenge for (fast) waveform modelling: disparate time and length scales

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

- Challenge for data analysis: many harmonics and cycles, complicated waveform

- Challenge for (fast) waveform modelling: disparate time and length scales

- Current fast Kludge models should be enough to detect EMRIs
- Accurate parameter estimation requires better models
 described by gravitational self-force (BH perturbation theory)

A

SO3: Probe the properties and immediate environments of Black Holes using EMRIs and IMRIs

- Challenge for data analysis: many harmonics and cycles, complicated waveform

- Challenge for (fast) waveform modelling: disparate time and length scales

- Current fast Kludge models should be enough to detect EMRIs
- Accurate parameter estimation requires better models
 described by gravitational self-force (BH perturbation theory)
- → Need for **extending waveforms models** to to spinning, eccentric and inclined systems (Ollie Burke's talk)
- → Need adapted inference strategies

SO4: Understand the astrophysics of stellar-mass black holes

- How are they born?
- Complementary to ground-based observations: LISA will observe sBHBs < hundreds of years before they merge.

SO4: Understand the astrophysics of stellar-mass black holes

- How are they born?
- Complementary to ground-based observations: LISA will observe sBHBs < hundreds of years before they merge.

SO5: Explore the fundamental nature of gravity and Black Holes

- Test GR in the strong field regime
- Test validity of GR Kerr solution for merger remnants \rightarrow see Chantal Pitte's talk

2. Science objectives

SO6: Probe the rate of expansion of the Universe with standard sirens

SO6: Probe the rate of expansion of the Universe with standard sirens

- We can probe the expansion of the universe at z > 2 with bright sirens: massive black hole binaries with EM counterparts
- We can probe the expansion of the universe at z < 1 with dark sirens: EMRIs (see Alberto Mangiagli's and Grégoire Pierra's talks)

SO6: Probe the rate of expansion of the Universe with standard sirens

- We can probe the expansion of the universe at z > 2 with bright sirens: massive black hole binaries with EM counterparts
- We can probe the expansion of the universe at z < 1 with **dark sirens**: EMRIs (see Alberto Mangiagli's and Grégoire Pierra's talks)

SO7: Understand stochastic GW backgrounds

- Would be groundbreaking discovery if we detect a stochastic GW background of cosmological origin (Alberto Roper Pol's talk)
- Unique probe of early-universe physics and TeV-scale particle physics)
- But very challenging data analysis task!
 (see Quang Nam Dam's talk)

SO6: Probe the rate of expansion of the Universe with standard sirens

- We can probe the expansion of the universe at z > 2 with bright sirens: massive black hole binaries with EM counterparts
- We can probe the expansion of the universe at z < 1 with dark sirens: EMRIs (see Alberto Mangiagli's and Grégoire Pierra's talks)</p>

SO7: Understand stochastic GW backgrounds

- Would be groundbreaking discovery if we detect a stochastic GW background of cosmological origin (Alberto Roper Pol's talk)
- Unique probe of early-universe physics and TeV-scale particle physics)
- But very challenging data analysis task!
 (see Quang Nam Dam's talk)

Å

Conclusion: bright future and many challenges

	Science Program Committee (SPC) Decision							
Decision				Mission Adoption				
milestones	Phase A			Phase B1		Phase B2/C/D	Phase E	
Mission phase								
Main actors during this mission phase	Feasibility Phase Two competing prime contractors Developing first designs of the mission		Refinement Phase Refine Mission Definition Get ready for Implementation Choose final Design Write the big mission document - the Red Book		Implementation One Prime Contractor chosen Now we build the mission!			
Reviews	Mission Definition Review (MDR)	Mission Consolidation Review (MCR)	Mission Formulation Review (MFR)		Mission Revieu	Adoption (MAR)	Launch	
Final Documents	CDF Report	Industrial & Inst Data Packs: (Technical & Programmatic)	Industrial & Inst Data Packs: (Tech & Programmatic)		Data Pack: (Tech & Programmatic) & Red Book			
Date	DEC 2017	DEC 2019	DEC	2021	20	24		

U

	Conclusio	on: bright future	and ma	ny challenges	We ar	e here Committee (SPC)	
Decision milestones		Phase A		Phase B1	Mission	Adoption Phase B2/C/D	Phase E
Mission phase							
Main actors during this mission phase	Feasibili Two comp Developin	ty Phase eting prime contractors g first designs of the mission	Refinement Phase Refine Mission Definition Get ready for Implementation Choose final Design Write the big mission document - the Red Book	Implementation One Prime Contractor chosen Now we build the mission! Book		Launch	
Reviews	Mission Definition Review (MDR)	Mission Definition Mission Consolidation Mission Review (MDR) Review (MCR) Revi		ormulation Mission v (MFR) Review			Adoption J (MAR)
Final Documents	CDF Report	Industrial & Inst Data Packs: (Technical & Programmatic)	Industrial & I (Tech & Pr	inst Data Packs: ogrammatic)	Data (Tech & Pro & Red	Pack: Igrammatic) I Book	
Date	DEC 2017	DEC 2019	DEC	2021	20	24	

U

	Conclusio	on: bright future	and many challenges	We ar	We are here			
Decision				Science Program Committee (SPC) De :ision Mission Adoption				
milliotones		Phase A	Phase B1		Phase B2/C/D	Phase E		
Mission phase								
Main actors during this mission phase	Feasibili Two comp Developin	Feasibility Phase Two competing prime contractors Developing first designs of the mission		t - the Red Book	Implementation One Prime Contractor chosen Now we build the mission!			
Reviews	Mission Definition Review (MDR)	Mission Consolidation Review (MCR)	Mission Formulation Review (MFR)	Mission Review	Adoption v (MAR)	Launch		
Final Documents	CDF Report Industrial & Inst Data (Technical & Programn		Industrial & Inst Data Packs: (Tech & Programmatic)	Data Pack: (Tech & Programmatic) & Red Book				
Date	DEC 2017	DEC 2019	DEC 2021	21	D24 SCIEN AHEA			

U

18

	Con	clusic	on: bright future	and ma	iny challenges We are here				
Decision milestones		Phase A			S Phase B1	Committee (SPC) .sion Adoption A Phase B2/C/D Phase E			
Mission phase									
Main actors during this mission phase		Feasibility Phase Two competing prime contractors Developing first designs of the mission			Refinement Phase Refine Mission Definition Get ready for Implementation Choose final Design Write the big mission document - the Red Book		Implementation One Prime Contractor chosen Now we build the mission!		
Reviews	Mission I Review	Mission Definition Mission Consolidation Mission Review (MDR) Review (MCR) Revi		Mission F Review	Formulation Mission Mission Wission Wission Revie		Adoption (MAR)	Launch	
Final Documents	CDF Report		Industrial & Inst Data Packs: (Technical & Programmatic)	Industrial & I (Tech & Pi	Inst Data Packs: rogrammatic)	Data (Tech & Pro & Red	Pack: Igrammatic) I Book		
Date DEC 2017		2017	DEC 2019	DEC	2021	20	24 SCIENCE AHEAD		
				Thonk	you for you attention!		\checkmark		

Thank you for you attention!

Back-up slides

LISA's operational concept: perform a *time-resolved*, *all-sky* survey of gravitational waves sources in the millihertz band.

• L0: raw telemetry

LISA's operational concept: perform a *time-resolved*, *all-sky* survey of gravitational waves sources in the millihertz band.

- L0: raw telemetry
- L0.5: processed and reformatted
- L1: noise-reduced TDI data

LISA's operational concept: perform a *time-resolved*, *all-sky* survey of gravitational waves sources in the millihertz band.

4

•

•

•

•

L0: raw telemetry

•

•

•

•

3. Science observations

LISA's operational concept: perform a *time-resolved*, *all-sky* survey of gravitational waves sources in the millihertz band.

L3: Catalogue of GW source candidates

- LISA long arm lengths makes it infeasible to have a classic Michelson configuration
- Instead, each link has its own laser source
- Interferometric measurement between the outgoing beam and light coming from distant spacecraft

Local laser Received signal