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I Context

e Gravitational Waves (GW)

o GWs are predicted by Einstein's theory
of General Relativity

o They are perturbations of the geometry
(curvature) of space time radiated by
massive binary systems

o They were first detected in 2015 by the
LIGO/Virgo Collaboration who
detected a GW signal produced by two
merging stellar black holes

e Super Massive Black Hole Binaries (SMBHB)
o  SMBHBs are binary systems of Super Massive Black Hole (SMBH) that we find at the center of galaxies
o Such systems are produced by Galaxy merger but have never been directly observed
o We could detect the GWs produced by SMBHBs using pulsars

Credit : Event Horizon telescope collaboration



I Context

e Millisecond pulsars (MSP)

O

Pulsars are very dense, highly magnetized
and rapidly rotating neutron stars

emitting beams of EM radiation making
them appear on Earth as series of pulses

A MSP is an old neutron star that got
spun up (recycled) by stealing gas and
angular momentum to its binary
companion

We observe them in the radio frequency
band

MSPs are very stable in their rotation,
allowing us to do precise timing
measurements and use them as clocks



For a large population of SMBHBs in the
Universe, we focus on two categories of

Context

signals:

Gravitational wave background
(GWB)
Continuous GWs (CGWs)
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Context

For a large population of SMBHBs in the
Universe, we focus on two categories of
signals:

e Gravitational wave background
(GWB)
e Continuous GWs (CGWs)

Data analysis
for GW detection
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The EPTA + InPTA collaboration

Partner telescopes:

Effelsberg

Lovell

Nancay Radio Telescope
Sardinia Radio Telescope

Westerbork Synthesis Radio Telescope
-+
GMRT in India
+

Large European Array for Pulsars (LEAP)
Low Frequency Array (LOFAR)
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I The Pulsar Timing Array (PTA)

Millisecond pulsars are very stable.

| ‘p\ .
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I The Pulsar Timing Array (PTA)

We can fit a timing model to predict the time of arrival (TOA) of the pulses.

Predicted TOA tp red

Observed TOA t
obs
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I Thg Pulsar Timing Array (PTA)

®
The gravitational wave signal modulates the expected TOAs of pulses..
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I Thg Pulsar Timing Array (PTA)

®
The gravitational wave signal modulates the expected TOAs of pulses..

without GW tp red
tobs — pred — 5t

with GW t e

..the measured differences are the timing residuals
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} The Pulsar Timing Array (PTA)

14



} The Pulsar Timing Array (PTA)
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I The Pulsar Timing Array (PTA)
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I The Pulsar Timing Array (PTA)
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I Data analysis

Fit a timing model to predict the TOAs and get the timing residuals

Build a noise model: white noise, red noise, dispersion variation noise

Noises are modelled as gaussian processes, encoded in the covariance matrix C
Bayesian analysis (set prior probability for parameters)

Posterior probability :

p(6t|6) = \/detl(QﬂC) exp (—%&T(jl&)ﬂ(_))

Residuals:
*\vs ignals

5t =5 S — Z si(N) - Deterministic signals (CGW, ephemeris, ...)

=1 18




I Data analysis

Bayesian analysis for model selection

e Estimate the Bayes factor to evaluate the significance of Hellings—Downs spatial
correlations

e The Bayes factor is defined as the ratio of the evidences

Zy = /dgMpM(6t|5N[) — B4 =22
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I Data analysis

The covariance matrix is made of diagonal autocorrelated terms X* describing the
intrinsic noise properties of pulsars and cross correlated terms X* describing the
common correlated signals (like the stochastic GW background)

Common correlated signal No common correlated signal

(30 01 SON] >0 0 ... 0
ol gplN 0o ... 0

AU 00 N
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I Data analysis

l

Credits: CAMRAS Tammo Jan Dijkema

White noise : measurement errors
(radiometer noise) + systematics

Swn =06(f = f)

X =

Oa,WN

+ XN + Z%M("‘Zgév)
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I Data analysis

Fw,

Spin rate

Time (gr)

Red noise : low frequency noise on

pulsar rotation

Srn = Apn fTTEN

¥ = g

i,WNéij HEE N+ Zha (+Z5)
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I Data analysis

™

Dispersion noise : dispersion due to

propagation through interstellar medium

K
SDM: ( ;M)ADMJC_’YDM

Za::UiWN5U4‘Z%N4‘

%M(+Z§%) 2




correlated across pulsars in array

f_'YGW

I Data analysis Sew = LagAaw

Stochastic Gravitational Wave Background : noise term,

2% = J?x,WNéij + XN + Z%M("_ng/v)
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I Results

e The gravitational wave background
e Estimating the significance
e Other sources
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| Results EPTA DR2 + InPTA : Gravitational wave
background
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arXiv: 2306.16214 : The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals, 2023



| Results EPTA DR2 + InPTA : Gravitational wave
background
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} Results EPTA DRz + InPTA : Significance
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} Results EPTA DRz + InPTA : Significance
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We construct the distribution of
BF(HD/CURN) under null
hypothesis (no GW) by estimating
BF(HD/CURN) for thousands of
different scrambles

We estimate the p-value from our
actual measurement of

BF(HD/CURN) with no scrambles

D~ 3.00
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| Results EPTA DR2 + InPTA : Other sources ?

Continuous gravitational wave : individual SMBHBs

Cosmic strings,

Inflationary GWB,

Next talk on tuesday : Alternative interpretation of DR2 new, Hippolyte

Quelquej aY'Leder e Credits : A simulated image of cosmic strings - Chris Ringeval

.
.
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I Conclusion

e There is strong evidence for a gravitational wave signal in the second data release
of the EPTA collaboration

e The p-value for the presence of a GW signal is of 3.5¢

e The main candidate for this signal is the stochastic GWB from SMBHB

e At the current stage it is impossible to determine the exact origin of this GW
signal

e The combination of all PTA datasets for the International PTA collaboration's 3rd
data release will increase our sensitivity and shed new light on the origins of this
signal

_—— \ P




I Thank you for your attention
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