Deep multimessenger search for compact binary mergers in LIGO, Virgo and Fermi/GBM data from 2016-2017

GdR Ondes Gravitationnelles 16-17 October 2023

Marion Pillas*, Tito Dal Canton, Cosmin Stachie, Brandon Piotrzkowski, Fergus Hayes, Rachel Hamburg, Eric Burns, Josh Wood, Pierre-Alexandre Duverne, Nelson Christensen

*<u>marion.pillas@oca.eu</u>

universite

PHENIICS

1.1 Introduction: Neutron star mergers

X CBC: Compact Binary Coalescence

Introduction - A deeper method to search for joint detections - Conclusion

Neutron star mergers \rightarrow GW & GRB search \rightarrow Existing joint searches

1.1 Introduction: Neutron star mergers

GW170817-GRB 170817A

Fundamental questions still remain:

- mergers?
- ejecta ...)

More joint detections are needed! \rightarrow Smoking gun on BNS progenitor

August 17th, 2017

• Are the properties of GW170817 common to all NS mergers or do they represent an exceptional case?

•What is the fraction of short and long GRBs associated with NS

•Bring information and constraints in fundamental physics (NS EoS, celerity of GWs...), astrophysics (BNS merger rate, ...), in cosmology (Hubble constant ...), in GRB physics (about the jet formation, the

Introduction - A deeper method to search for joint detections - Conclusion \checkmark Neutron star mergers \rightarrow GW & GRB search \rightarrow Existing joint searches

1.2 Introduction: GW & GRB Searches

CBC search

- Carried out by several independent pipelines:
 - Modeled searches (PyCBC, GstLal, MBTA)
 - Minimally modeled search (cWB)
- In this analysis : triggers from **PyCBC** (from **O2**) which is a matched-filtering based analysis pipeline.

1.2 Introduction: GW & GRB Searches

GBM Targeted Search

- Look for excesses of photon counts search timescales from 0.064 s to 8.192 s
- Use three template spectra (**soft normal hard**)
- **Sky localization** of the GBM triggers

• For each time window: log-likelihood ratio (LLR) — GBM triggers generated by only keeping the window having the highest LLR if ≥ 5

1.3 Introduction: Existing Joint Searches

Joint searches already exist since O1:

Search	Inputs	Description	Time scale
RAVEN	GW data (RAVEN: GW candidate) (X nineline: Unmodeled	Joint False Alarm Rate: $FAR_c = FAR_{GW}R_{EM}\Delta t/I_{\Omega}$ Result in an alert	A few seconds
PyGRB	GWBs triggers) associated with	Deep & coherent search for a nearby GW signal Compute a p-value or put a lower limits on the luminosity distance to the GRB	Hours to days
X-pipeline	External astrophysical trigger (e.g. a GRB)	Deep & coherent search Use time-frequency maps to generate candidates Compute a p-value	for GW data around 1 GRB

Note: Other searches have been performed for specific events: Blackburn's method to search for a GW150914 counterpart, p-value for the GW170817 and GRB 170817A

association ...

However, many of these searches have statistical or computational limitations that prevent their application to a large number of weak candidate events.

Introduction - A deeper method to search for joint detections - Conclusion

 \longrightarrow Neutron star mergers \rightarrow GW & GRB search \rightarrow **Existing joint searches**

Procedure

We developed a **deep** search for GW/GRB associations (Pillas et al. 2023, Deep multimessenger search for compact binary mergers in LIGO, Virgo and Fermi/GBM data from 2016-2017, published in ApJ):

- Does not consider confident events only but instead use the full list of GW triggers and Fermi/GBM triggers covering the same run
- Find pairs of Fermi/GBM and GW triggers that could possibly have a common origin
- Rank the pairs with a **ranking statistic**
- Assign a **FAR** to them

K False Alarm Rate (FAR): How likely it is for noise to produce a trigger with the same ranking statistic as the candidate in question?

Introduction - A deeper method to search for joint detections - Conclusion

Method → Results

Ranking statistic Λ

[G. Ashton et al 2018]

$$\Lambda = \frac{P(D_g, D_\gamma | \text{signal})}{P(D_g, D_\gamma | \text{noise})}$$

signal

 H_c : both D_g & D_γ contain signals & common source

 $H_{NN}: \text{noise in both } D_g \& D_{\gamma}$ $H_{SN}: \text{signal in } D_g \text{ and noise in } D_{\gamma}$ noise $H_{NS}: \text{the inverse}$ $H_{SS}: \text{signals in both } D_g \& D_{\gamma} \text{ but}$ unrelated sources

No prior preference assumption

Ranking statistic Λ

[G. Ashton et al 2018]

$$\Lambda = \frac{P(D_g, D_\gamma | \text{signal})}{P(D_g, D_\gamma | \text{noise})}$$

signal

 H_c : both D_g & D_γ contain signals & common source

 $H_{NN}: \text{ noise in both } D_g \& D_{\gamma}$ $H_{SN}: \text{ signal in } D_g \text{ and noise in } D_{\gamma}$ noise $H_{NS}: \text{ the inverse}$ $H_{SS}: \text{ signals in both } D_g \& D_{\gamma} \text{ but}$ unrelated sources

No prior preference assumption

 $Q_{g} = \frac{P(D_{g} \mid \text{noise})}{P(D_{g} \mid \text{signal})} \quad \text{Bayes factor noise-vs-signal, g : GW data}$ $Q_{\gamma} = \frac{P(D_{\gamma} \mid \text{noise})}{P(D_{\gamma} \mid \text{signal})} \quad \text{Bayes factor noise-vs-signal, } \gamma : \text{GBM data}$ $I_{\Delta t} , I_{\Omega} \quad \text{quantify the overlap of the posterior distributions for the time offset and sky locations}$

 $\frac{1}{1}$ Introduction - A deeper method to search for joint detections - Conclusion $\frac{1}{1}$ Method \rightarrow Results

- GBM triggers

Configurations

- \checkmark Analysis with PyCBC triggers coming from the 2nd Gravitational-Waves Observing Run: <u>check the validity of</u> our method against GW170817 — GRB 170817A
- ✓ Different configurations have been tested to **maximize the significance** of this joint detection

Only the optimized configuration presented here:

- Background computation with time-slides ± 180000 s with step of 70 s
- Including Virgo contribution in the sky localization
- Applying a preliminary cut of the GW triggers based on their FAR_{GW} Threshold of 2/day (based on GWTC-3)

Introduction - A deeper method to search for joint detections - Conclusion Method \rightarrow **Results**

Method → **Results**

Introduction - A deeper method to search for joint detections - Conclusion Method \rightarrow **Results**

prop	erties	GBM properties					Joint propert			
		Duration								
ne	Q_g	$[\mathbf{s}]$	Spectrum	LLR	Q_γ	$\Delta t \ [s]$	I_{Ω}^{EA}	Λ	Ι	
445	$6.31 imes 10^{-6}$	0.512	normal	72.51	1.91×10^{-3}	2.02	17.2	16.0		
445	$6.31 imes 10^{-6}$	4.096	soft	15.38	$8.67 imes 10^{-1}$	2.72	27.9	13.6		
445	6.31×10^{-6}	0.064	hard	14.32	9.20×10^{-1}	1.86	2.86	1.40		
254	1.18×10^{-2}	0.064	normal	9.457	10.0	12.71	5.05	0.261		

3. Conclusion

Validity of the method

- We were able to analyze a large amount of triggers (~800000 GBM triggers & ~500 GW triggers)
- Found GW170817-GRB 1707817A with a high significance!
- Lot of noise on the GW side \rightarrow GW170817-GRB 170817A is not highly significant (Not presented here).
- We found a configuration that works (presented here): has been used in O3 (paper under review by the LIGO/Virgo collaboration).

Improvement & Perspectives

- Change the time offset prior into a more realistic one.
 - Can we try: $\Delta t_{\text{GW-GRB}} = (\Delta t_{\text{jet}} + \Delta t_{\text{bo}} + \Delta t_{\text{GRB}})(1+z)$ [B. Zhang, 2019]
- Not shown here: The GW Bayes Factor should be improved: it doesn't discriminate properly between noise and signal.
 - We tried another method: use both the BSN and BCI.
 - Use the p_{astro} ?
- To be used in O4.

Introduction - A deeper method to search for joint detections - Conclusion

3. Conclusion

Configurations

- ✓ Analysis with PyCBC triggers coming from the 2nd Gravitationa check the validity of our method against GW170817 —
- \checkmark Different configurations have been tested to maximize the significa

Configurations:

- Separating the associations by GBM spectral values and GBM dura
- Background computation with time-slides ± 50000 s with step of
- Background computation with time-slides ± 180000 s with step of
- Including Virgo contribution in the sky localization
- Applying a preliminary cut of the GW triggers based on their FAR

al-Waves Obser GRB 170817 ance of this joint	ving Run: A detection	~8000 GBM trig & ~1500 trigge	00 ggers 0 GW rs		~800000 GBM trigge & ~500 GV triggers
	Config 1.	Config 2.	Config 3.	Config 4.	Config 5.
ations	Yes	Yes	Yes	No	No
100 s	Yes	Yes	No	No	No
f 70 s	No	No	Yes	Yes	Yes
	No	Yes	Yes	Yes	Yes
GW	No	No	No	No	Yes
	-				

Only config 5. presented here

)ui	ration:
_	0.064 s
_	0.128 s
_	0.256 s
_	0.512 s
_	1.024 s
_	2.048 s
_	4.096 s
	8.192 s
	all

op	erties	GBM properties					Joint properti			
)	Q_g	Duration [s]	Spectrum	LLR	Q_{γ}	$\Delta t \; [\mathrm{s}]$	I_{Ω}^{EA}	Λ	IF	
45	6.31×10^{-6}	0.512	normal	72.51	1.91×10^{-3}	2.02	17.2	16.0	1	
45	6.31×10^{-6}	4.096	soft	15.38	8.67×10^{-1}	2.72	27.9	13.6		
60	3.76×10^{-2}	4.096	hard	16.61	$5.31 imes 10^{-1}$	-6.62	3.31	1.63		
38	7.29×10^{-3}	0.064	soft	13.05	1.75	0.638	6.22	2.20		

operties		GBM properties					Joint properti			
;	Q_g	Duration [s]	Spectrum	LLR	Q_γ	$\Delta t \; [\mathrm{s}]$	I_{Ω}^{EA}	Λ	IF	
45	6.31×10^{-6}	0.512	normal	72.51	1.91×10^{-3}	2.02	17.2	16.0		
15	6.31×10^{-6}	4.096	soft	15.38	8.67×10^{-1}	2.72	27.9	13.6		
60	3.76×10^{-2}	4.096	hard	16.61	5.31×10^{-1}	-6.62	3.31	1.63		
38	7.29×10^{-3}	0.064	soft	13.05	1.75	0.638	6.22	2.20		

prop	erties	GBM properties				Joint properti			
ne	Q_g	Duration [s]	Spectrum	LLR	Q_γ	$\Delta t \; [\mathrm{s}]$	I_{Ω}^{EA}	Λ	IF
445	6.31×10^{-6}	0.512	normal	72.51	1.91×10^{-3}	2.02	17.2	16.0	4
445	6.31×10^{-6}	4.096	soft	15.38	8.67×10^{-1}	2.72	27.9	13.6	
160	3.76×10^{-2}	4.096	hard	16.61	5.31×10^{-1}	-6.62	3.31	1.63	
338	7.29×10^{-3}	0.064	soft	13.05	1.75	0.638	6.22	2.20	

• Configuration n°4

Significance of the foreground

Significance: $\sim 3\sigma$ detection

official »

Configurations n°3 & n°4

Some **background** (time-shifted) associations have a **higher association ranking statistics**. For example :

	GW prop	erties	GBM properties				Joint properties		
Rank	Merger time	Q_g	Duration [s]	Spectrum	LLR	Q_γ	$\Delta t \; [\mathrm{s}]$	I_{Ω}^{EA}	Λ
1	1176213122.254	2.98×10^{-1}	0.512	normal	176.6	1.05×10^{-3}	-6.78	17.2	17.8

This association contains a real GRB and noise in the GW channel (with an IFAR = $4.265 \times 10^{-5} yr$)

What limits GW170817 — GRB 170817A significance?

To maximize the significance we decide to apply a cut on the GW triggers based on their false alarm rate value. We choose a threshold of 2 per day, inspired from GWTC-3 (configuration 5).

Background associations

