October 17th 2023

(Alternative) Interpretations of the Data Release 2 of the EPTA

Université Paris Cité

Hippolyte QUELQUEJAY - PhD Student (2nd year)

European Pulsar Timing Array Collaboration

What are Pulsar Timing Arrays ?

Data : Time series of **residuals** for each pulsar

The results of the EPTA DR2new

What could produce such signal ?

Astrophysical Sources

- GWB produced by a population of SMBHB

- Individual SMBH Binary Source

...

-

- **Cosmological Sources**
 - Inflation
 - Cosmic Strings
 - Phase Transitions

...

-

SMBHB : Super Massive Black Hole Binary

What could produce such signal ?

Astrophysical Sources

GWB produced by a population of SMBHB

- Individual SMBH Binary Source

...

-

What if the signal we observe is (partially) produced by a <u>single</u> SMBHB ?

The second data release from the European Pulsar Timing Array

IV. Search for continuous gravitational wave signals

J. Antoniadis^{61,2,1}, P. Arumugam^{3,11}, S. Arumugam^{4,11}, S. Babak^{5,1}, M. Bagchi^{66,7,11}, A.-S. Bak Nielsen^{2,8,1}, C, G, Bassa^{9,1}, A, Bathula^{10,11}, A, Berthereau^{11,12,1}, M, Bonetti^{13,14,15,1}, E, Bortolas^{13,14,15,1}, P, R, Brook^{16,1}, M. Burgayo^{17, I}, R. N. Caballero^{18, I}, A. Chalumeau^{13, I}, D. J. Champion^{2, I}, S. Chanlaridis^{1, I}, S. Chen^{9, I}, I. Cognard^[1,12,1], S. Dandapat^[20,11], D. Deb^[6,11], S. Desai^[21,11], G. Desvignes^[2,1], N. Dhanda-Batra^{22,11}, C. Dwivedi^{23,II}, M. Falxa^{5,11,I*}, I. Ferranti^{513,5,I}, R. D. Ferdman^{24,I}, A. Franchini^{513,14,I}, J. R. Gair^{52,I} B. Goncharov^{26,27,1} A. Gopakumar^{20,11}, E. Graikou^{2,1}, J.-M. Grießmeier^{011,12,1}, L. Guillemot^{011,12,1}, Y. J. Guo^{2,1}, Y. Gupta^{28, II}, S. Hisano^{29, II}, H. Hu^{2, I}, F. Iraci^{3017, I}, D. Izquierdo-Villalba^{313, 14, I}, J. Jang^{2, I}, J. Jawor^{2, I}, G. H. Janssen^{9,31,1}, A. Jessner^{2,1}, B. C. Joshi^{28,3,11}, F. Kareem^{32,33,11}, R. Karuppusamy^{2,1}, E. F. Keane^{34,1}, M. J. Keith^{35,1}, D. Kharbanda^{21,11}, T. Kikunaga^{29,11}, N. Kolhe^{36,11}, M. Kramer^{2,35,1}, M. A. Krishnakumar^{2,8,1,11}, K. Lackeos^{2,1}, K. J. Lee^{37,38,1}, K. Liu^{2,1}, Y. Liu^{038,8,1}, A. G. Lyne^{35,1} J. W. McKee^{39,40,1}, Y. Maan^{28,11}, R. A. Main^{2,1}, S. Manzini^{13,5,1}, M. B. Mickaliger^{35,1}, I. C. Nitu^{35,1} K. Nobleson^{641, II}, A. K. Paladi^{42, II}, A. Parthasarathy^{2, I}, B. B. P. Perera^{43, I}, D. Perrodin^{17, I}. A. Petiteau^{64,5ee,1}, N. K. Porayko^{13,2,1}, A. Possenti^{17,1}, T. Prabu^{45,11}, H. Ouelquejay Leclere^{5,1}, P. Rana^{620,11} A. Samajdar^{646,1}, S. A. Sanidas^{35,1}, A. Sesana^{13,14,15,1}, G. Shaifullah^{613,14,17,1}, J. Singha^{63,11}, L. Speri^{625,1**}. R. Spiewak^{35,1}, A. Srivastava^{21,11}, B. W. Stappers^{35,1}, M. Surnis^{47,11}, S. C. Susarla^{48,1}, A. Susobhanan^{49,11} K. Takahashi^{50,51,11} P. Tarafdar^{6,11}G. Theureau^{11,12,52,1}, C. Tiburzi^{17,1}, E. van der Wateren^{9,31,1}. A. Vecchio^{516,1}, V. Venkatraman Krishnan^{62,1}, J. P. W. Verbiest^{53,8,2,1}, J. Wang^{58,54,55,1}, L. Wang^{35,1} and Z. Wuo^{38,8,1}

(Affiliations can be found after the references)

Received May 8, 2023; accepted

Is this possibility physically well motivated ?

 \rightarrow Would be the outcome of a massive and nearby SMBHB emerging above the background noise

Reasonable chance of having an individual source with SNR > 3 at low frequencies

Problem : It is hard to distinguish a signal produced by a single source from an isotropic background noise

Indeed, HD correlations are also expected from a single source

Residuals induced by an individual SMBHB

- \rightarrow Plane wave approximation
- \rightarrow Residuals are composed of two terms
 - 1. **Pulsar term** : time delay caused by the GW at the radio pulse emission at the pulsar (pulsar dependent)
 - 2. **Earth term** : time delay caused by the GW at the radio pulse reception on Earth (common to all pulsars at a given time)

$$r_{CW}(t) = r(t_e) - r(t_p)$$
, with $t_e = t_p + \tau$

- \rightarrow Frequency evolution of the binary
 - 1. During observation time : very small a. $r(t) \rightarrow$ simple sine wave

$$\omega(t) = \omega_0 \left[1 - \frac{256}{5} \mathcal{M}^{5/3} \omega_0^{8/3} (t - t_0) \right]^{-3/8}$$

Principle of the Bayesian analysis

$$\log \mathcal{L} = (\delta t - r_{CW})_a^T C_{ab}^{-1} (\delta t - r_{CW})_b + \dots$$
Pulsar indices

$$C_{(ai)(bj)} = \mathcal{N}_{a,(ij)} \delta_{ab} + C_{a,(ij)}^{PSR} \delta_{ab} + \Gamma_{ab} C_{(ij)}^{CRN}$$
Pulsar indices

$$C_{(ai)(bj)} = \mathcal{N}_{a,(ij)} \delta_{ab} + C_{a,(ij)}^{PSR} \delta_{ab} + \Gamma_{ab} C_{(ij)}^{CRN}$$
Pulsar Red Noises Overlap Reduction
Frequency domain
Function

$$S(f; \vec{n}) = \frac{A^2}{12\pi^2} \left(\frac{f}{yr^{-1}}\right)^{-\gamma} yr^3$$

$$S(f; \vec{n}) = \frac{A^2}{12\pi^2} \left(\frac{f}{yr^{-1}}\right)^{-\gamma} yr^3$$
11

Results for circular SMBHB search

- \rightarrow CGW candidate around 5 nHz
- \rightarrow Chirp mass is loosely constrained
- \rightarrow Adding HD correlations to the background noise **absorbs** the CGW candidate

What about statistical significance ?

PSRN : PulSar Red Noise CRN : Common Red Noise

Very strong support if no CRN is included in the noise model

The inclusion of the CGW (in addition to a CURN) is not really favoured **with wide frequency prior range** (model complexity penalty)

13

Results for eccentric SMBH binary

Preliminary Results from Sara Manzini

How much can we constrain the early Universe with the EPTA DR2new ?

The second data release from the European Pulsar Timing Array

V. Implications for massive black holes, dark matter and the early Universe

J. Antoniadis^{1,2,1}, P. Arumugam^{3,11}, S. Arumugam^{4,11}, P. Auclair⁵, S. Babak^{6,1}, M. Bagchi^{7,8,11}, A.-S. Bak Nielsen^{2,9,1}, E. Barausse¹⁰, C. G. Bassa^{11,1}, A. Bathula^{12,11}, A. Berthereau^{13,14,1}, M. Bonettio^{15, 16, 17, I}, E. Bortolas^{15, 16, 17, I}, P. R. Brook^{18, I}, M. Burgay^{19, I}, R. N. Caballero^{20, I}, C. Caprini^{21, 22}, A. Chalumeau^[3,1,1], D. J. Champion^[2,1], S. Chanlaridis^[1,1], S. Chen^[23,1], I. Cognard^[3,14,1], M. Crisostomi^[0,10] S. Dandapat^{(324,11}, D. Deb^{(3,11}, S. Desai^{(325,11}, G. Desvignes^{(32,11}, N. Dhanda-Batra^{26,11}, C. Dwivedi^{(327,11})</sup> M. Falxa^{6, 13, I}, F. Fastidio^{28, 15}, R. D. Ferdman^{29, I}, A. Franchini^{15, 16, I}, J. R. Gair^{31, I}, B. Goncharov^{32, 33, I} A. Gopakumar^{(24,11}, E. Graikou^{2,1}, J.-M. Grießmeier^{(13,14,1}, A. Gualandris^{(28,1}, L. Guillemot^{(13,14,1}, Y. J. Guo^{2,1}) Y. Gupta^{34, II}, S. Hisano^{35, II}, H. Hu^{2, I}, F. Iraci^{3619, I}, D. Izquierdo-Villalba^{15, 16, I}, J. Jang^{2, I}, J. Jawor^{2, I} G. H. Janssen^{11, 37, I}, A. Jessner^{2, I}, B. C. Joshi^{34, 3, II}, F. Kareem^{38, 39, II}, R. Karuppusamy^{2, I}, E. F. Keane^{40, I}, M. J. Keith^{641, I}. D. Kharbanda^{625, II}. T. Khizriev.³⁰. T. Kikunaga^{635, II}. N. Kolhe^{642, II}. M. Kramer^{2,41, I}. M. A. Krishnakumar^{0,2,9,1,11}, K. Lackeos^{0,2,1}, K. J. Lee^{3,8,2,1}, K. Liu^{2,1}, Y. Liu^{0,43,9,1}, A. G. Lyne^{41,1}, J. W. McKee^{64,45,1}, Y. Maan^{34,11}, R. A. Main^{2,1}, M. B. Mickaliger^{641,1}, H. Middleton⁶¹⁸, A. Neronov^{6,46}, I. C. Niţu^{641, I}, K. Nobleson^{647, II}, A. K. Paladi^{648, II}, A. Parthasarathy^{62, I}, B. B. P. Perera^{649, I}, D. Perrodin^{619, I}, A. Petiteau^{50,6,1}, N. K. Porayko^{15,2,1*}, A. Possenti^{19,1}, T. Prabu^{51,11}, K. Postnov^{30,53}, H. Quelquejay Leclere^{6,1**}. P. Rana^{24,11}, A. Roper Pol²¹, A. Samajdar^{52,1}, S. A. Sanidas^{41,1}, D. Semikoz⁶, A. Sesana^{15,16,17,1***}, G. Shaifullah^{015, 16, 19, I}, J. Singha^{03, II}, C. Smarra¹⁰, L. Speri^{031, I}, R. Spiewak^{41, I}, A. Srivastava^{025, II}, B. W. Stappers^{41, I}, D. A. Steer⁶M. Surnis^{54, II}, S. C. Susarla^{55, I}, A. Susobhanan^{56, II}, K. Takahashi^{57, 58, II} P. Tarafdar^{37,11}G. Theureau^{13,14,59,1}, C. Tiburzi^{19,1}, R. J. Truant¹⁵, E. van der Wateren^{11,37,1}, S. Valtolina⁶⁰, A. Vecchio^[18,1], V. Venkatraman Krishnan^[2,1], J. P. W. Verbiest^[61,9,2,1], J. Wang^[9,62,63,1], L. Wang^{41,1} and Z. Wu043,9,1

Primordial GWs | SGWB from inflation

 \rightarrow very simple modelisation : **power law** to link the large CMB scales to small PTA scales

Tensor to scalar ratio

$$\Omega_{\rm GW}(f) \approx 1.5 \times 10^{-16} \left(\frac{r}{0.032}\right) \left(\frac{f}{f_*}\right)^{n_T}$$
CMB scale (~ 0.05 Mpc⁻¹)

 \rightarrow 2 model parameters, for **slow roll** inflation: $n_T \simeq 0$

 \rightarrow Constraints from CMB (Planck collaboration): r < 0.076 and $-0.55 < n_T < 2.54$ at 95%

Explaining all the PTA CRN with inflation

Tu

 \rightarrow Not compatible with classic slow roll inflation

 \rightarrow Must be a blue tilted spectrum

Obtaining upper limit including simple circular SMBHB background

$$n_T = a \log_{10} \left(\frac{r}{0.032} \right) + b$$

a = -0.16, b = 0.70 ¹⁷

How cosmic strings produce GWs ?

Some assumptions used

- \rightarrow stable cosmic strings associated to a local symmetry
- \rightarrow intercommutation probability of 1
- → GW emission is dominant (Nambu-Goto strings)

credits: freeastroscience

spontaneous symmetry breaking

at
$$\eta \propto \sqrt{G\mu}$$

credits: Pierre Auclair

 \rightarrow Loops are produced and emit GWs via oscillation and burst emission (cusp, kink, kink-kink collision)

$$f_n = \frac{2n}{\ell}$$

SGWB sourced by turbulence after QCD phase transition

* Characteristic scale of the turbulence

 Ω_* Ratio of the turbulent energy density to the radiation one

 $\Omega_{\rm GW}(f) = 3 \mathcal{A} \Omega_*^2 \left(\lambda_* \mathcal{H}_*\right)^2 F_{\rm GW,0} S_{\rm turb}(\lambda_* f)$

C* Temperature scale of the phase transition

 \rightarrow The preferred set of parameters require a lot of turbulent energy density but can fit also fit the data with smaller values of Ω_*

See Roper Pol et al [2201.05630] for model description

20

Summary

 \rightarrow The correlated signal that is detected in EPTA DR2new could have several origin

 \rightarrow The presence of a SMBHB at ~2.5 nHz (orbital frequency) could explain very well the correlated power we see at low frequency (strong interaction with the GWB modelisation)

→ The statistical significance of this candidate is hard to assess due to the difference in model complexity

→ We constrained many early universe models that predict a SGWB : can all (partially) fit the signal we see

- 1. Slow roll inflation alone is quite incompatible with the data \rightarrow must be blue tilted to reach PTA sensitivity
- 2. Cosmic strings can only fit the lowest frequency bins (not blue tilted enough spectrum) \rightarrow place stringent constraints on the string tension
- 3. Turbulence from QCD PT can fit the data at low frequency

Backup slides

NANOGrav also sees something at this frequency

