Detectability of a phase transition in neutron stars with third-generation interferometers

quarks & gluons quarks & gluons cross over CEP deconfinement transition Based on: C. Mondal, M. Antonelli, hadrons hadrons F. Gulminelli, M. Mancini, quarkyonic J. Novak, M. Oertel, matter MNRAS 524 3 (2023) 5151001300 [arxiv.org 2305.05999] condensates color super conductor n., **Neutron stars** μ_{B} μ_1

Marco Antonelli – antonelli@lpccaen.in2p3.fr

CNRS & Laboratoire de Physique Corpusculaire, Caen

General Assembly of the GdR OG Meudon, October 17, 2023

Motivation: signatures of phase transition in GW?

Detection of GW by LVC from NS mergers opens the possibility of probing the QCD phase diagram:

Late inspiral: static properties \rightarrow "TOV" + "corrections" \rightarrow the NSs are still cold

Merger: expensive NR simulations \rightarrow big limitation

Post-merger: oscillation models of HMNS (hot, more difficult to detect)

Tidal deformability

$$Q_{tid} = -\lambda \mathcal{E}_{tid}$$
$$\Lambda = \frac{\lambda}{M^5}$$

Information from the inspiral:

- The joint tidal $\tilde{\Lambda}$ not Λ_1, Λ_2
- The chirp mass \mathcal{M}_c not m_1, m_2

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \qquad q = m_2/m_1$$

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^{1/5}}$$

Motivation: signatures of phase transition in GW?

Most et. al., PRL 122, 061101 (2019)

Due to increased sensistivity of new GW interferometers more orbits will be available \rightarrow reaslistic response of the detector needed

Nucleonic metamodel (technical details: PRC 97, 025805, 2018)

• Flexible functional $e(n_n, n_p)$ able to reproduce existing effective nucleonic models and interpolate between them.

$$n = n_n + n_p \qquad \delta = (n_n - n_p)/n \qquad x = (n - n_{sat})/(3n_{sat})$$
$$e_{HM}^{N=2}(n, \delta) = E_{sat} + \frac{1}{2}K_{sat}x^2 + \delta^2(E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2) \qquad \text{Expansion at saturation...}$$
...must be extended for NS

• The energy per particle can be rewritten as,

$$egin{aligned} e(n_n,n_p) &\simeq e_{ ext{SNM}}(n,0) + e_{ ext{sym}}(n)\delta^2 \ e_{meta}(n_n,n_p) &= KE(n_n,n_p) + \sum_{lpha \geq 0} rac{1}{lpha !} \left(v^{is}_{lpha} + v^{iv}_{lpha} \delta^2
ight) x^{lpha} \ v^{is(iv)}_{lpha} &\equiv f\left(E_{ ext{sat}}, K_{ ext{sat}} \cdots J_{ ext{sym}}, L_{ ext{sym}} \cdots
ight) \end{aligned}$$

"Nuclear matter parameters" \rightarrow some are constrained by "laboratory nuclear physics" & "theory"

The idea in short: "metamodel" = the most general EoS under the nucleonic hypothesis. The usual expansion at saturation is extended by including the kinetic term for a Fermi gas (with effective masses) and a higher-order polynomial

Hybrid metamodel (const. sound speed in the quark phase)

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: $n_{\rm t}, \Delta \varepsilon, c_{\rm s}^2$

We consider three families of hybrid metamodels:

"PT03", "PT04", "PT05" based on the density at the onset of the nucleonquark transition fixed to $0.3, 0.4, 0.5 \text{ fm}^{-3}$.

NON INFORMED PRIOR:

- \rightarrow To build the prior for the **nucleonic** metamodel, 16 NMPs are varied randomly over a wide domain according to a flat distribution.
- \rightarrow For all **hybrid** models "PT03", "PT04", "PT05", all the 18 parameters are "flat".

Hybrid metamodel (const. sound speed in the quark phase)

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: $n_{\rm t}, \Delta \varepsilon, c_{\rm s}^2$

We consider three families of hybrid metamodels:

"PT03", "PT04", "PT05" based on the density at the onset of the nucleonquark transition fixed to $0.3, 0.4, 0.5 \text{ fm}^{-3}$.

Low-density filters:

 \rightarrow meaningful reproduction of the whole AtomicMassEvaluation mass table (AME3016) $\rightarrow \chi$ -EFT filter based on the constraints on SNM and PNM between 0.02-0.2 fm⁻³

High-density filters:

- \rightarrow Maximum mass at least 2 $\rm M_{Sun}$
- \rightarrow the EOS must be able to reproduce a benchmark value for the Λ of GW170817

Hybrid metamodel

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: $n_{\rm t}, \Delta \varepsilon, c_{\rm s}^2$

Constraints in Bayesian studies: χ -EFT, Finite nuclei, M_{max}, GW170817 *etc.*

Hybrid metamodel

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: $n_{\rm t}, \Delta \varepsilon, c_{\rm s}^2$

Constraints in Bayesian studies:

 χ -EFT, Finite nuclei, M_{max}, GW170817 *etc.*

Detector's response & procedure

To assess the uncertainty in the parameter estimation associated with future observations, we make use of the publicly available Python package "GWBENCH", https://gitlab.com/sborhanian/gwbench

To simulate an event, GWBENCH needs:

- Chirp mass
- Reduced mass
- 2 spins
- Luminosity distance
- Inclination angle of orbital plane
- Tidal deformabilities of both stars

$$\left(\mathcal{M}_c, \eta, \vec{\chi}_1, \vec{\chi}_2, \mathcal{D}_L, \iota, \tilde{\Lambda}, \delta\tilde{\Lambda}\right)$$

$$\chi_1 = 0.01, \ \chi_2 = 0.005, \ \iota = 45^{\circ}$$

 \rightarrow Detector network: triangle configuration for Einstein Telescope, two detectors Cosmic Explorer

 \rightarrow For a selection of GW detectors ("network") and given a waveform model, GWBENCH can compute: "+" and "x" polarizations of the WF, detector PSD, detector responses, detector and network signal to noise ratios...

Bayesian framework to quantify the compatibility of a **simulated observation** with a purely nucleonic and/or a hybrid (nucleons+quarks) neutron star.

 \rightarrow We supply m1 & m2 and their tidal deformabilities for a given EOS ("injection") $\rightarrow \tilde{\Lambda}_0(\mathcal{M}_c^0, q_0)$

BNS coalescing event specified by $\{\mathcal{M}_c^0, q_0, \widetilde{\Lambda}_0\}$

 \rightarrow GWB ench returns the posterior "observational" distribution

$$p^0_{GW}(\mathcal{M}_c, q, \tilde{\Lambda})$$
 and the marginalized $p^0_{GW}(\tilde{\Lambda}) = p^0_{GW}(q)$

$$p_{meta}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid meta, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right) \quad p_{PT}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid PT, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right) = 8$$

$$p_{meta}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid meta, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$
$$p_{PT}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid PT, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$

Injection models with PT

"observational" distribution $p^0_{GW}(\tilde{\Lambda})$

Example with PT03

"Near" event (22 Mpc)

$$p_{meta}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid meta, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$
$$p_{PT}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid PT, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$

Injection models with PT

"observational" distribution $p^0_{GW}(\tilde{\Lambda})$

Example with PT03 "Distant" event (1000 Mpc)

$$p_{meta}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid meta, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$
$$p_{PT}^{(1)}(\tilde{\Lambda}) \equiv p\left(\tilde{\Lambda} \mid PT, BI = \mathcal{M}_c^0, p_{GW}^0(q)\right)$$

"observational" distribution $p^0_{GW}(\tilde{\Lambda})$

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

To distinguish the nucleonic metamodel and the hybrid metamodels, we use the Bayes factors.

Given a precise measurement of the tidal deformability, the Bayes factor can be defined as

$$B_{PT,meta}(\tilde{\Lambda}) = \frac{p_{PT}^{(1)}(\tilde{\Lambda})}{p_{meta}^{(1)}(\tilde{\Lambda})}$$

However, the tidal has an uncertainty (in the form of distribution), so we consider an opportune average of the Bayes factors.

It seems possible to infer the presence of a PT at low densities (PT03) with $B\sim 100$

$$\log\left(\langle B\rangle_{PT,meta}^{\mathcal{M}_{c}^{0},q_{0}}\right) = \int d\tilde{\Lambda} \ p_{GW}^{0}(\tilde{\Lambda}) \log\left[\frac{p_{PT}^{(1)}(\tilde{\Lambda})}{p_{meta}^{(1)}(\tilde{\Lambda})}\right]$$

Summary

- A possible mechanism to detect the signature of 1st order phase transition was proposed.
- The nucleonic metamodelling is used as a "null hypothesis" in a Bayesian framework.
- Detection of a PT depends on many things (astro parameters, detector's response, PT itself). In principle, it is possible to detect a low density PT with 3rd gen. interferometers (1 loud event):

We considered a **single detection**, and compared different chosen cases corresponding to different masses of Nss, located at different distances, and using injection models which include first-order phase transition.

- \rightarrow Mass ratio does not play a significant role in the Bayes factors.
- \rightarrow Higher chirp mass, smaller luminosity distances, early phase transition with strong first-order effect: facilitate possible identification of phase transition
- \rightarrow If phase transition at higher densities (~3 sat. den. "PT05"): most likely to be masked

Realistic **population** models to be incorporated \rightarrow Analysis based on many events on the way

Astro constraints

Burgio et. al (2021)