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Motivation

o Neutrino (𝝂) radiation is the main 
mechanism for Neutron Star (NS) 
cooling

o Requires the knowledge of 𝜈
interaction with dense QCD matter in 
the core :

𝒋 & 𝝀 ↔ 𝐽𝐿/𝑅𝐽𝐿/𝑅
𝑅
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o Computing 𝐽𝐿/𝑅𝐽𝐿/𝑅
𝑅

in the dense

strongly-coupled QCD matter is a 

difficult problem

o We consider the holographic

approach

Problem : compute 𝐽𝐿/𝑅𝐽𝐿/𝑅
𝑅

in 

holographic QCD at finite T and 𝑛𝐵

→ This work : simplest toy model 
(quark matter in 𝒩 = 4 SYM)

Motivation
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Formalism for neutrino transport 

The transport of neutrinos is described by the Boltzmann equation obeyed by the  
𝝂 distribution function 𝒇𝝂 𝒙, 𝒕; 𝒌𝝂

(𝑘𝜈 ⋅ 𝜕)𝑓𝜈 ≡ 𝑗 𝐸𝜈 1 − 𝑓𝜈 −
1

𝜆 𝐸𝜈
𝑓𝜈 .

We focused on charged current interactions : 𝜈𝑒 + 𝑑 ↔ 𝑒− + 𝑢

At order 𝒪(𝑮𝑭
𝟐) in the electro-weak interaction 

Emissivity
Mean Free Path

𝑗𝑐 𝐸𝜈 = 𝐺𝐹
2 න

dk𝑒
3

2𝜋 3
kins 𝜆 𝜎 × stats × Im 𝑖 𝐽𝜆

−𝐽𝜎
+ 𝑅 ,

𝑘𝑒, 𝑘𝜈 𝑓𝑒 , 𝑓𝑊
Dense QCD

∼ 𝐽𝜆
𝐿𝐽𝜎

𝐿 𝑅
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The holographic set-up
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The holographic correspondence 

Strongly-coupled quantum field
theory in 4D 

Weakly-curved classical gravitational 
theory in 5D 

𝑔𝑀𝑁, 𝜙

The boundary of the 5D space (bulk) is the 4D space-time on which the quantum 
theory is defined
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The Holographic Dictionary 

𝑇μν ↔ gMN

𝑂 ↔ φ

G : 𝜕μJμ = 0 ↔ G : AM

Every quantum operator has a dual field in the bulk of same quantum numbers
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The Holographic Set-up

Simplest bottom-up holographic toy model with chiral currents 𝑱𝑳/𝑹
𝝁

𝑆 = 𝑀𝑃𝑙
3 න dx5 −𝑔 𝑅 +

12

ℓ2
− κ Tr 𝑭𝑴𝑵

(𝑳)
𝑭(𝑳)

𝑴𝑵 + 𝑭𝑴𝑵
(𝑹)

𝑭(𝑹)
𝑴𝑵 ,

𝑇μν ↔ gMN

𝑈 𝑁𝑓 L
× 𝑈 𝑁𝑓 R

: 𝜕μJL/R
μ

= 0 ↔ 𝑈 𝑁𝑓 L
× 𝑈 𝑁𝑓 R

: AL/R
M
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Background solution

We want to compute 𝑱𝝀
−𝑱𝝈

+ 𝑹 in an equilibrium state at finite (𝑻, 𝝁𝒒) = dense 

strongly-coupled quark matter

→ Charged AdS black hole, with charge 𝑸 ∝ 𝝁𝒒

(𝑇, 𝜇𝑞) AdS5- Reisnner-
Nordström

𝑸 ∝ 𝝁𝒒
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Summary of parameters 

Parameters of the 
model

𝑀𝑃𝑙ℓ
Fitted to free quark-

gluon thermodynamics 
𝜅

Environmental
parameters 

𝜇𝑞

𝑇
Varied

Neutrino
properties

𝐸𝜈

𝑇
Varied
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Holographic calculation of the chiral 
current 2-point function
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Perturbations of AdS-RN
[Son & Starinets ‘02]

[Skenderis & van Rees ‘08]

Linear response theory

𝛿𝐴𝜇

𝛿 𝐽𝜇 = 𝐽𝜇𝐽𝜈 𝑅𝛿𝐴𝜈

𝛿𝐴𝜇
𝛿𝐴𝑀

Infalling

Perturbations of AdS-RN
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Hydrodynamic approximation

Hydrodynamics describes the long-range dynamics of the system :

→ Expansion in (𝜔/𝑇, 𝑘/𝑇), with transport coefficients 

𝐽𝜆
−𝐽𝜎

+ 𝑅 𝜔, 𝑘 = 𝝈 𝑃𝜆𝜎
⊥ 𝜔 + 𝑃𝜆𝜎

∥ 𝜔2 − 𝑘2

𝜔 + 𝑖𝑫𝑘2
1 + 𝒪

𝜔

𝑇
,
𝑘2

𝑇2
,

AdS-RN : the hydro approximation remains valid at 𝑻 ≪ 𝝎, 𝒌 ≪ 𝝁𝒒

→ 𝝂 transport in a NS: 𝑬𝝂, 𝝁𝒆, 𝝁𝝂 ≪ 𝝁𝒒

At 𝝁𝒒 ≫ 𝑻, we have 𝜇𝑒 , 𝜇𝜈 ≃ 0.7 𝜇𝑞

[Davison & Parnachev ‘13]
[Moitra, Sake & Trivedi ‘21]

Conductivity 𝜕𝑡𝐽0 = 𝐷Δ𝐽0
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Numerical results 
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Opacities : comparison with hydro

𝜅 𝐸𝜈 = 𝑗 𝐸𝜈 +
1

𝜆(𝐸𝜈)

𝑇 = 10 MeV

𝝂 ത𝝂
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Comparison with weak coupling 

𝑇 = 10 MeV, 𝑛𝐵 = 0.11 fm−3

[Iwamoto ‘82]
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Summary and outlook 
First step towards the description of holographic neutrino transport : toy model of 
strongly-coupled quark matter 

o Hydrodynamic behavior

o Opacity suppressed compared with the weak coupling result 

o More work is needed to corroborate these results 

Several directions of improvement :

o Neutrino rates from neutral current interactions

o Transport in an isospin asymmetric medium

o More realistic model of holographic QCD
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Thank you !
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Appendix
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A. Details about the formalism for neutrino 
transport
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Formalism for neutrino transport 

Exercice : compute the exact propagator 𝑮𝝂(𝒙𝟏, 𝒕𝟏; 𝒙𝟐, 𝒕𝟐) of 𝜈’s in a dense QCD 
medium 

Quasi-particle approximation :

𝑮𝝂 is described by the 𝝂 distribution function 𝒇𝝂 𝒙, 𝒕; 𝒌𝝂

The transport of neutrinos is described by the Boltzmann equation obeyed by 𝑓𝜈

(𝑘𝜈 ⋅ 𝜕)𝑓𝜈 ≡ 𝑗 𝐸𝜈 1 − 𝑓𝜈 −
1

𝜆 𝐸𝜈
𝑓𝜈 .

Emissivity
Mean Free Path
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Schwinger-Dyson equation 

𝑗 𝐸𝜈 = 𝐺𝐹
2 න

dk𝑒
3

2𝜋 3
kins 𝜆 𝜎 × stats × Im 𝑖 𝐽𝜆

−𝐽𝜎
+ 𝑅 ,

𝑘𝑒, 𝑘𝜈 𝑓𝑒 , 𝑓𝑊
Dense QCD

∼ 𝐽𝜆
𝐿𝐽𝜎

𝐿 𝑅

The kinetic equation can be derived from the finite temperature Schwinger-Dyson 

equation, at order 𝒪(𝑮𝑭
𝟐) in the electro-weak interaction 

Dirac 
equation

= +

𝝂 + 𝒏 ↔ 𝒆− + 𝒑

+ Neutral current
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B. Large N
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The Holographic Set-up

Simplest bottom-up holographic toy model with chiral currents 𝑱𝑳/𝑹
𝝁

𝑆 = 𝑀𝑃𝑙
3 𝑁𝑐

2 න dx5 −𝑔 𝑅 +
12

ℓ2
−

κ

𝑁𝑐
Tr 𝑭𝑴𝑵

(𝑳)
𝑭(𝑳)

𝑴𝑵 + 𝑭𝑴𝑵
(𝑹)

𝑭(𝑹)
𝑴𝑵 ,

𝑇μν ↔ gMN

𝑈 𝑁𝑓 L
× 𝑈 𝑁𝑓 R

: 𝜕μJL/R
μ

= 0 ↔ 𝑈 𝑁𝑓 L
× 𝑈 𝑁𝑓 R

: AL/R
M

𝑁𝑐 → ∞ ,
𝑁𝑓

𝑁𝑐
finite
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C. Details about the perturbations of AdS-RN
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Perturbations of AdS-RN

𝐽𝜆𝐽𝜎
𝑅 is obtained by considering perturbations of the fields on top of AdS-RN

𝐴𝐿/𝑅
𝑀 → ҧ𝐴𝐿/𝑅

𝑀 + 𝛿𝐴𝐿/𝑅
𝑀 , 𝑔𝑀𝑁 → ҧ𝑔𝑀𝑁 + 𝛿𝑔𝑀𝑁 ,

∀𝝋, 𝛿𝜑 = 
d4𝑘

2𝜋 4 e𝑖𝑘.𝑥𝐶𝑘 𝑧 𝛿𝜑0 𝑘 , At 𝑧 ∼ 𝑧𝐻 : Ck 𝑧 ∼ 𝑧𝐻 − 𝑧 −
𝑖𝑘0𝑧𝐻

4

oOnly 𝜹𝑻𝑴𝑵 ∝ 𝛿𝐴𝐵 couples to 𝜹𝒈

o The charged current gauge fields decouple from 𝛿𝑔

[Son & Starinets ‘02]

Infalling boundary condition

[Skenderis & van Rees ‘08]
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Perturbations : Symmetries
The boundary plasma has an SO(3) rotational invariance 

𝐽𝜆𝐽𝜎
𝑅 𝜔, 𝑘 = 𝑃⊥ 𝜔, 𝑘

𝜆𝜎
𝑖𝚷⊥ 𝛚, 𝐤 + 𝑃∥ 𝜔, 𝑘

𝜆𝜎
𝑖𝚷∥ 𝛚, 𝐤

For a given mode (𝝎, 𝒌), it reduces to an SO(2) subgroup

The perturbations are divided into helicity sectors that decouple SO(2)

𝑘 = 𝑘 Ԧ𝑒3

Helicity Gauge field Metric

ℎ = 0 𝛿𝐴0 , 𝛿𝐴3 𝛿𝑔0
0 , 𝛿𝑔0

3 , 𝛿𝑔3
3 , 𝛿𝑔1

1 + 𝛿𝑔2
2

ℎ = 1 𝛿𝐴1,2 𝛿𝑔0
1,2 , 𝛿𝑔3

1,2

ℎ = 2 − 𝛿𝑔2
1 , 𝛿𝑔1

1 − 𝛿𝑔2
2
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Sector decoupled from the metric 
Consider 𝛿𝐴𝜇 that decouples from 𝛿𝑔𝜇𝜈

The modes are organized in terms of the gauge-invariants under 
U 1 ∶ 𝛿𝐴 → 𝛿𝐴 + d𝛿𝜆

𝒉 = 𝟏 𝒉 = 𝟎

𝛿𝐴1 , 𝛿𝐴2 𝐸∥ ≡ 𝜔𝛿𝐴3 + 𝑘𝛿𝐴0

The linearized Maxwell equations in each helicity sector can be written in terms of 
the gauge-invariants

The Π’s are extracted from the solutions near the boundary (𝑧 → 0)

Π⊥ ∝ −
ℓ

𝑧
ቤ

𝜕𝑧𝛿𝐴1

𝛿𝐴1 𝑧→0

, Π∥ ∝ −
ℓ

𝑧
อ

𝜕𝑧𝛿𝐸∥

𝛿𝐸∥

𝑧→0

.
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Sector coupled to the metric 

𝛿𝑋 ≡ 𝛿𝐴𝐵 couples to 𝛿𝑔𝜇𝜈

Again, organize the modes in terms of the gauge-invariants under : 
o 𝑈 1 ∶ 𝛿𝑋 → 𝛿𝑋 + d𝛿𝜆
o Diffeomorphisms : 

𝒉 = 𝟏 𝒉 = 𝟎

𝛿𝑋1,2 𝛿𝑆1 ≡ 𝜔𝛿𝑋3 + 𝑘𝛿𝑋0 + 𝑎 𝑧 𝜇 𝑘(𝛿𝑔1
1 + 𝛿𝑔2

2)

𝛿𝑌1,2 ≡ 𝑘𝛿𝑔0
1,2 + 𝜔𝛿𝑔3

1,2 𝛿𝑆2

≡ 2𝜔𝑘𝛿𝑔0
3 + 𝜔2𝛿𝑔𝑧

𝑧 − 𝑓 𝑧 𝑘2𝛿𝑔0
0 + 𝑏 𝑧, 𝜔/𝑘 𝑘2 𝛿𝑔1

1 + 𝛿𝑔2
2

𝛿𝑋𝑀 → 𝛿𝑋𝑀 + 𝛿𝜉𝑁𝜕𝑁
ത𝑋𝑀 + ത𝑋𝑁𝜕𝑀𝛿𝜉𝑁

𝛿𝑔𝑀𝑁 → 𝛿𝑔𝑀𝑁 + ∇𝑀𝛿𝜉𝑁 + ∇𝑁𝛿𝜉𝑀
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Sector coupled to the metric 
The linearized Einstein-Maxwell equations in each helicity sector can be written in 
terms of the gauge-invariants :

o 𝒉 = 𝟏 : 2 coupled 2nd order ODE’s for 𝛿𝑋1,2 and 𝛿𝑌1,2

o 𝒉 = 𝟎 : 2 coupled 2nd order ODE’s for 𝛿𝑆1 and 𝛿𝑆2

The Π’s are extracted from the solutions near the boundary (𝑧 → 0)

𝛿𝑋1 = 𝛿 𝑋1 + 𝑧2𝛿Π𝑋1
+ ⋯ , 𝛿Π𝑋1

≡ 𝚷𝐗𝐗
⊥ 𝛿 𝑋1 + Π𝑋𝑌

⊥ 𝛿 𝑌1 ,

Compute 2 solutions and invert the linear relation 

𝚷𝑿𝑿
⊥ Π𝑋𝑌

⊥ = 𝛿Π𝑋1

(1)
𝛿Π𝑋1

(2) 𝛿 𝑋1
1

𝛿 𝑋1
2

𝛿 𝑌 1
1 𝛿 𝑌(2)

1

−1

𝒉 = 𝟏 :
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Hydrodynamic approximation

The long-range behavior of a system near equilibrium is described by hydrodynamics

→ Equilibrium correlators follow a universal long-range structure :

o Expansion in (𝜔/𝑇, 𝑘/𝑇), with transport coefficients 

o The hydro modes appear as poles at leading order  

𝐽𝜆𝐽𝜎
𝑅 𝜔, 𝑘 = 𝝈 𝑃𝜆𝜎

⊥ 𝜔 + 𝑃𝜆𝜎
∥ 𝜔2 − 𝑘2

𝜔 + 𝑖𝑫𝑘2
1 + 𝒪

𝜔

𝑇
,
𝑘2

𝑇2
,

Conductivity 𝜕𝑡𝐽0 = 𝐷Δ𝐽0
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Charged current correlators 

𝜇𝑞

𝑇
≃ 65


