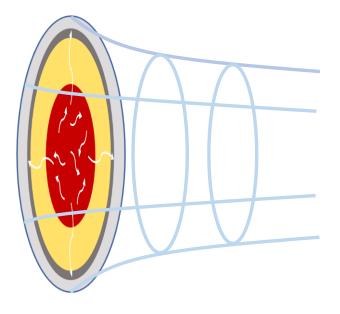
Neutrino Transport in Holography



Edwan PREAU

Groupement de recherche Ondes gravitationnelles

17/10/23

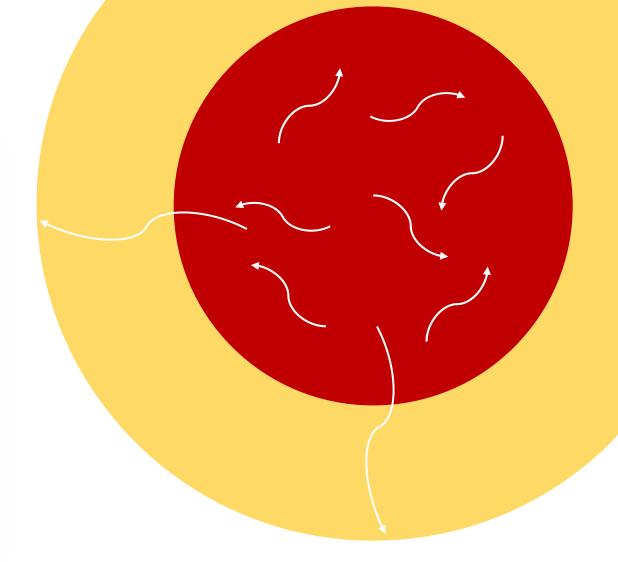
Collaborators: Elias KIRITSIS (APC), Francesco NITTI (APC) and Matti JÄRVINEN (APCTP)

arXiv:2306.00192

Motivation

- Neutrino (v) radiation is the main mechanism for Neutron Star (NS) cooling
- Requires the knowledge of v
 interaction with dense QCD matter in
 the core :

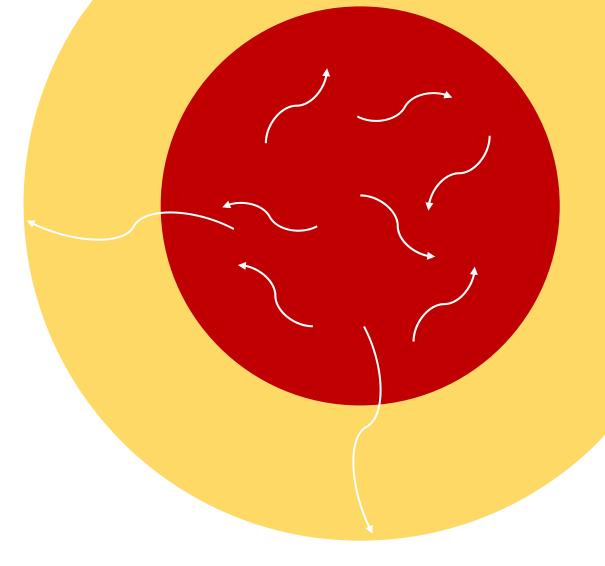
$$\boldsymbol{j} \otimes \boldsymbol{\lambda} \leftrightarrow \left\langle J_{L/R} J_{L/R} \right\rangle^{R}$$



Motivation

- Computing $\langle J_{L/R} J_{L/R} \rangle^R$ in the dense strongly-coupled QCD matter is a difficult problem
- We consider the holographic approach

Problem : compute $\langle J_{L/R} J_{L/R} \rangle^R$ in holographic QCD at finite T and n_B \rightarrow This work : simplest toy model (quark matter in $\mathcal{N} = 4$ SYM)



Formalism for neutrino transport

The transport of neutrinos is described by the Boltzmann equation obeyed by the ν distribution function $f_{\nu}(\vec{x}, t; k_{\nu})$

$$(k_{\nu} \cdot \partial) f_{\nu} \equiv j(E_{\nu})(1 - f_{\nu}) - \frac{1}{\lambda(E_{\nu})} f_{\nu}$$
.
Emissivity
Mean Free Path

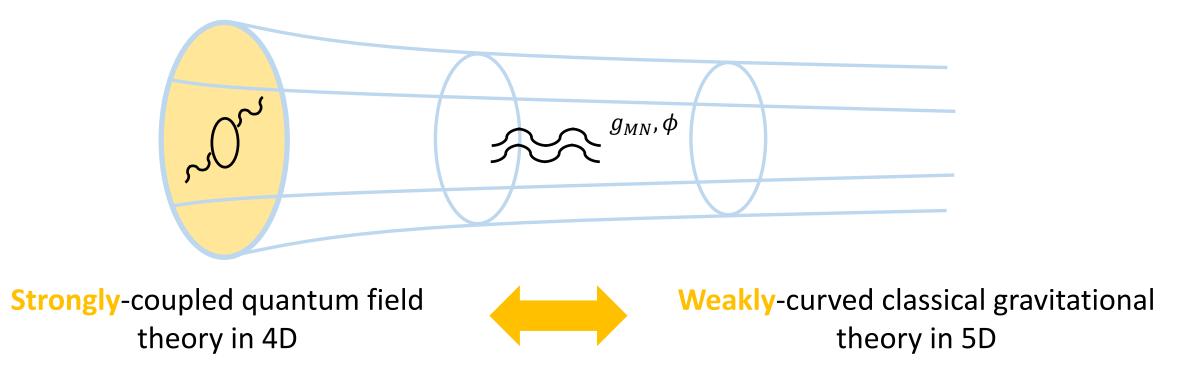
We focused on charged current interactions : $v_e + d \leftrightarrow e^- + u$

At order $\mathcal{O}(G_F^2)$ in the electro-weak interaction

$$j_{c}(E_{\nu}) = G_{F}^{2} \int \frac{d\vec{k}_{e}^{3}}{(2\pi)^{3}} \underbrace{(\text{kins})^{\lambda \sigma} \times (\text{stats})}_{\vec{k}_{e}, \vec{k}_{\nu}} \times \underbrace{(\text{stats}) \times \text{Im}(i\langle J_{\lambda}^{-}J_{\sigma}^{+}\rangle^{R})}_{\text{Dense QCD}} \\ - \langle J_{\lambda}^{L}J_{\sigma}^{L} \rangle^{R}$$

The holographic set-up

The holographic correspondence



The **boundary** of the 5D space (**bulk**) is the **4D space-time** on which the quantum theory is defined

The Holographic Dictionary

Every quantum operator has a dual field in the bulk of same quantum numbers

The Holographic Set-up

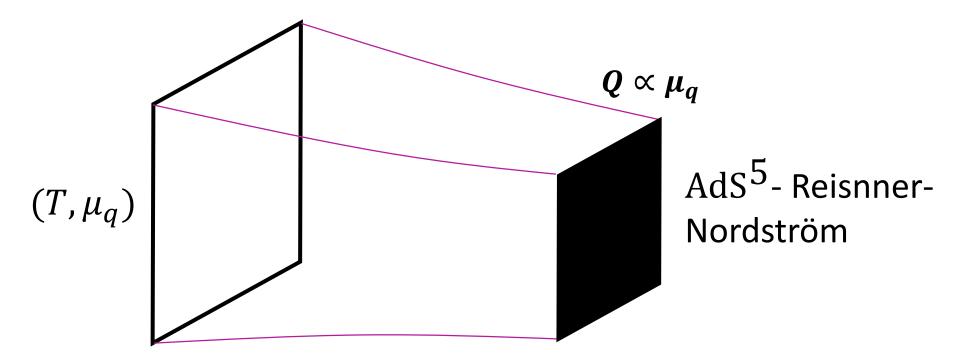
Simplest bottom-up holographic toy model with chiral currents $J_{L/R}^{\mu}$

$$T_{\mu\nu} \qquad \longleftrightarrow \qquad g_{MN}$$
$$U(N_f)_L \times U(N_f)_R : \partial_\mu J_{L/R}^{\mu} = 0 \qquad \Longleftrightarrow \qquad U(N_f)_L \times U(N_f)_R : A_{L/R}^{M}$$
$$S = M_{Pl}^3 \int dx^5 \sqrt{-g} \left(R + \frac{12}{\ell^2} - \kappa \operatorname{Tr} \left\{ F_{MN}^{(L)} F_{(L)}^{MN} + F_{MN}^{(R)} F_{(R)}^{MN} \right\} \right),$$

Background solution

We want to compute $\langle J_{\lambda}^{-}J_{\sigma}^{+}\rangle^{R}$ in an equilibrium state at finite (T, μ_{q}) = dense strongly-coupled quark matter

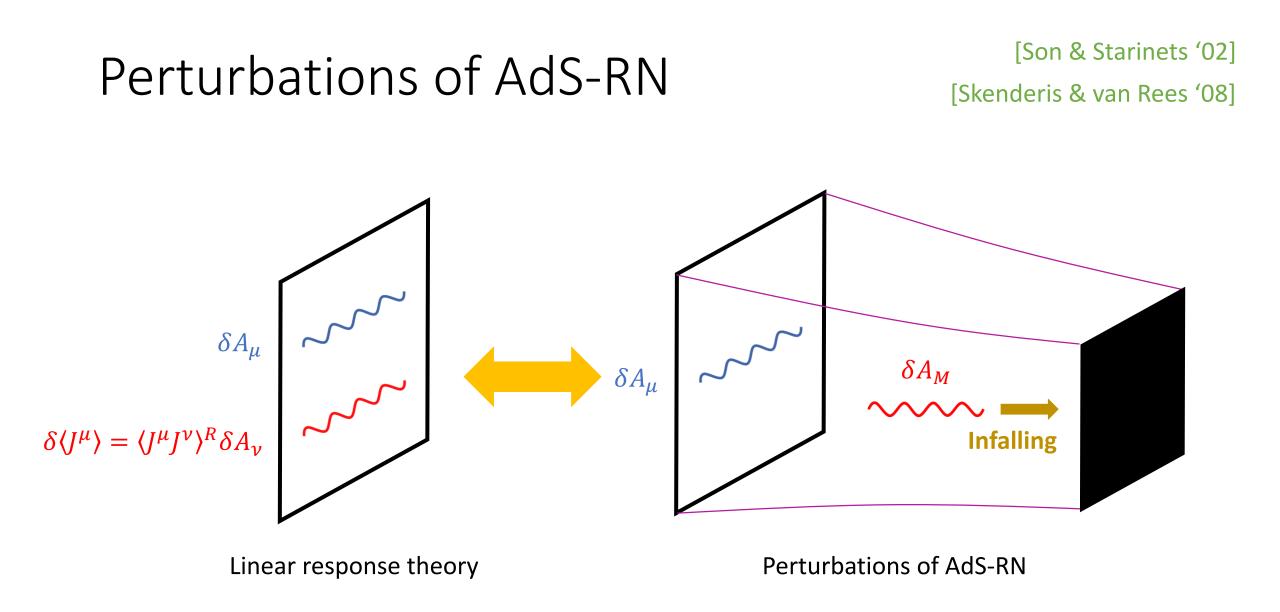
 \rightarrow Charged AdS black hole, with charge $Q \propto \mu_q$



Summary of parameters

Parameters of the model	М _{Рl} ℓ к	Fitted to free quark- gluon thermodynamics
Environmental parameters	$rac{\mu_q}{T}$	Varied
Neutrino properties	$\frac{E_{\nu}}{T}$	Varied

Holographic calculation of the chiral current 2-point function



Hydrodynamic approximation

Hydrodynamics describes the long-range dynamics of the system :

 \rightarrow Expansion in ($\omega/T, k/T$), with transport coefficients

$$\langle J_{\lambda}^{-} J_{\sigma}^{+} \rangle^{R} \left(\omega, \vec{k} \right) = \sigma \left(P_{\lambda\sigma}^{\perp} \omega + P_{\lambda\sigma}^{\parallel} \frac{\omega^{2} - k^{2}}{\omega + i \mathbf{D} k^{2}} \right) \left(1 + \mathcal{O} \left(\frac{\omega}{T}, \frac{k^{2}}{T^{2}} \right) \right) ,$$
Conductivity
$$\partial_{t} J^{0} = D \Delta J^{0}$$

AdS-RN : the hydro approximation remains valid at $T \ll \omega$, $k \ll \mu_a$

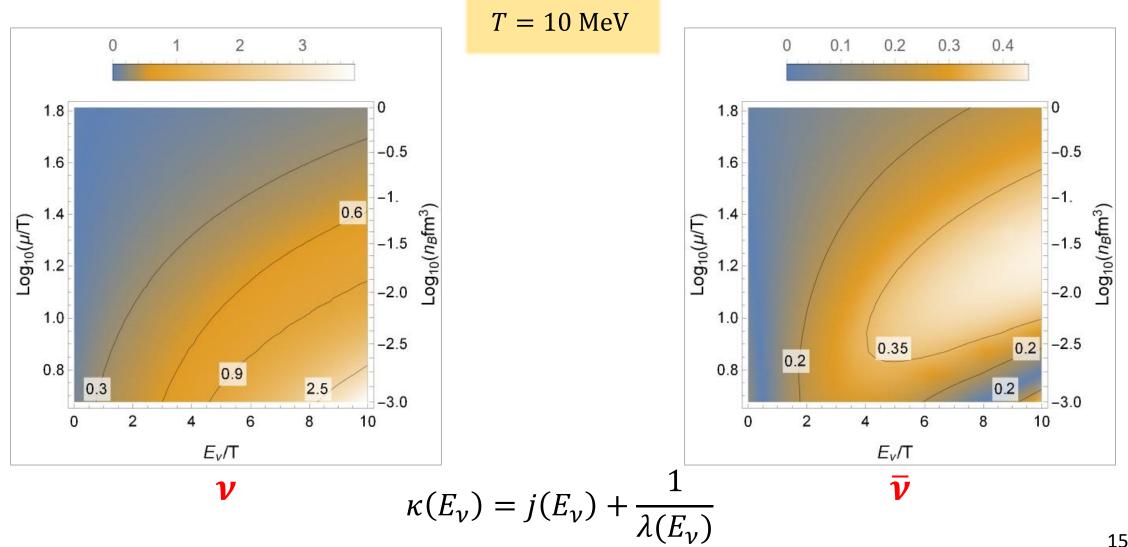
 $\rightarrow \nu$ transport in a NS: $E_{\nu}, \mu_e, \mu_{\nu} \ll \mu_q$

[Davison & Parnachev '13] [Moitra, Sake & Trivedi '21]

At
$$\mu_q \gg T$$
, we have $\mu_e, \mu_\nu \simeq 0.7 \ \mu_q$

Numerical results

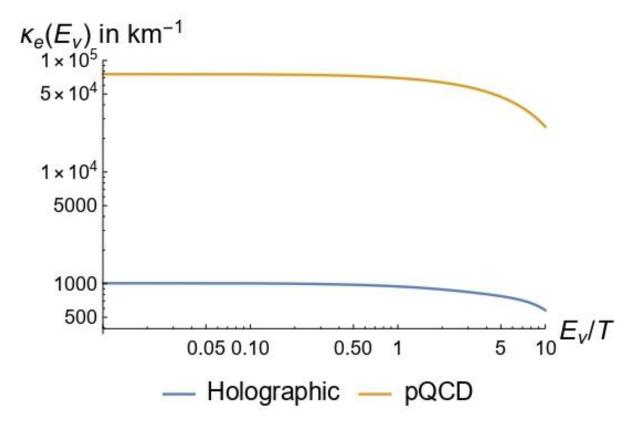
Opacities : comparison with hydro



15/17

Comparison with weak coupling

[lwamoto '82]



T = 10 MeV, $n_B = 0.11$ fm⁻³

Summary and outlook

First step towards the description of holographic **neutrino transport** : toy model of **strongly-coupled quark matter**

- Hydrodynamic behavior
- **Opacity suppressed** compared with the weak coupling result
- More work is needed to corroborate these results

Several directions of improvement :

- Neutrino rates from neutral current interactions
- Transport in an isospin asymmetric medium
- More realistic model of holographic QCD

Thank you !

Appendix

A. Details about the formalism for neutrino transport

Formalism for neutrino transport

<u>Exercice</u> : compute the exact propagator $G_{\nu}(\vec{x}_1, t_1; \vec{x}_2, t_2)$ of ν 's in a dense QCD medium

<u>Quasi-particle approximation :</u>

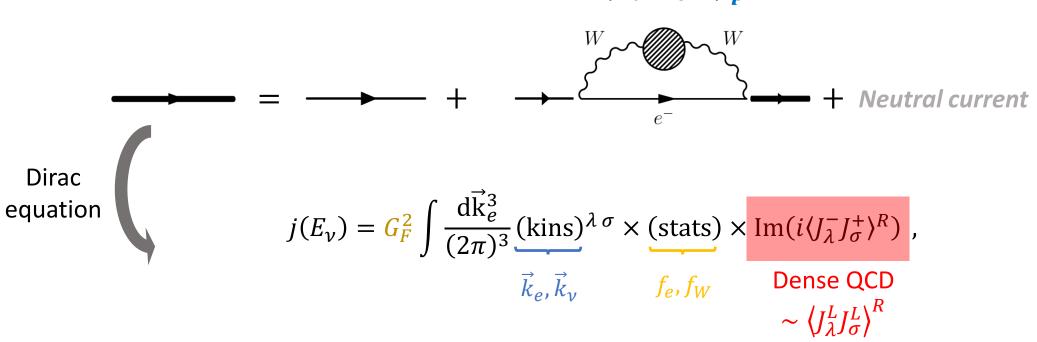
 G_{ν} is described by the ν distribution function $f_{\nu}(\vec{x}, t; k_{\nu})$

The transport of neutrinos is described by the Boltzmann equation obeyed by f_{ν}

$$(k_{\nu} \cdot \partial) f_{\nu} \equiv j(E_{\nu})(1 - f_{\nu}) - \frac{1}{\lambda(E_{\nu})} f_{\nu}$$
.
Emissivity
Mean Free Path

Schwinger-Dyson equation

The kinetic equation can be derived from the finite temperature Schwinger-Dyson equation, at order $\mathcal{O}(G_F^2)$ in the electro-weak interaction



 $\nu + n \leftrightarrow e^- + p$

B. Large N

The Holographic Set-up

Simplest bottom-up holographic toy model with chiral currents $J_{L/R}^{\mu}$

$$T_{\mu\nu} \qquad \Longleftrightarrow \qquad g_{MN}$$

$$U(N_f)_L \times U(N_f)_R : \partial_{\mu} J_{L/R}^{\mu} = 0 \qquad \Longleftrightarrow \qquad U(N_f)_L \times U(N_f)_R : A_{L/R}^{M} \text{ finite}$$

$$S = M_{Pl}^3 N_c^2 \int dx^5 \sqrt{-g} \left(R + \frac{12}{\ell^2} - \frac{\kappa}{N_c} \operatorname{Tr} \left\{ F_{MN}^{(L)} F_{(L)}^{MN} + F_{MN}^{(R)} F_{(R)}^{MN} \right\} \right),$$

C. Details about the perturbations of AdS-RN

Perturbations of AdS-RN

[Son & Starinets '02] [Skenderis & van Rees '08]

 $\langle J_{\lambda}J_{\sigma}\rangle^{R}$ is obtained by considering **perturbations** of the fields on top of **AdS-RN**

$$A_{L/R}^M \to \bar{A}_{L/R}^M + \delta A_{L/R}^M$$
, $g_{MN} \to \bar{g}_{MN} + \delta g_{MN}$,

$$\forall \boldsymbol{\varphi}, \ \delta \varphi = \int \frac{d^4 k}{(2\pi)^4} e^{ik.x} C_k(z) \delta \varphi_0(k) , \quad \text{At } z \sim z_H : C_k(z) \sim (z_H - z)^{-\frac{ik^0 z_H}{4}}$$

Infalling boundary condition

\circ Only $\delta T_{MN} \propto \delta A_B$ couples to δg

 \circ The charged current gauge fields decouple from δg

Perturbations : Symmetries

The boundary plasma has an SO(3) rotational invariance

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}\left(\omega,\vec{k}\right) = P^{\perp}\left(\omega,\vec{k}\right)_{\lambda\sigma}i\Pi^{\perp}(\omega,\mathbf{k}) + P^{\parallel}\left(\omega,\vec{k}\right)_{\lambda\sigma}i\Pi^{\parallel}(\omega,\mathbf{k})$$
$$\vec{k} = k\vec{e}_{3}$$
For a given mode (ω,\vec{k}) , it reduces to an SO(2) subgroup

The perturbations are divided into helicity sectors that decouple

Helicity	Gauge field	Metric
h = 0	δA_{0} , δA_{3}	δg^0_0 , δg^3_0 , δg^3_3 , $\delta g^1_1 + \delta g^2_2$
h = 1	$\delta A_{1,2}$	$\delta g_0^{1,2}$, $\delta g_3^{1,2}$
h = 2	—	δg_2^1 , $\delta g_1^1 - \delta g_2^2$

27/17

Sector decoupled from the metric

Consider δA_{μ} that decouples from $\delta g_{\mu\nu}$

The modes are organized in terms of the gauge-invariants under $U(1) : \delta A \rightarrow \delta A + d\delta \lambda$

h = 1	$oldsymbol{h}=oldsymbol{0}$
δA_1 , δA_2	$E^{\parallel} \equiv \omega \delta A_3 + k \delta A_0$

The linearized Maxwell equations in each helicity sector can be written in terms of the gauge-invariants

The Π 's are extracted from the solutions near the boundary $(z \rightarrow 0)$

$$\Pi^{\perp} \propto -\frac{\ell}{z} \frac{\partial_z \delta A_1}{\delta A_1} \bigg|_{z \to 0} , \qquad \Pi^{\parallel} \propto -\frac{\ell}{z} \frac{\partial_z \delta E^{\parallel}}{\delta E^{\parallel}} \bigg|_{z \to 0} .$$
^{28/17}

Sector coupled to the metric

 $\delta X \equiv \delta A_B$ couples to $\delta g_{\mu\nu}$

Again, organize the modes in terms of the gauge-invariants under : $O U(1) : \delta X \rightarrow \delta X + d\delta \lambda$ O Diffeomorphisms :

$$\begin{split} \delta X_M &\to \delta X_M + \delta \xi^N \partial_N \bar{X}_M + \bar{X}_N \partial_M \delta \xi^N \\ \delta g_{MN} &\to \delta g_{MN} + \nabla_M \delta \xi_N + \nabla_N \delta \xi_M \end{split}$$

h = 1	h = 0	
$\delta X_{1,2}$	$\delta S_1 \equiv \omega \delta X_3 + k \delta X_0 + a(z) \mu k (\delta g_1^1 + \delta g_2^2)$	
$\delta Y^{1,2} \equiv k \delta g_0^{1,2} + \omega \delta g_3^{1,2}$	$\delta S_2 \equiv 2\omega k \delta g_0^3 + \omega^2 \delta g_z^z - f(z) k^2 \delta g_0^0 + b(z, \omega/k) k^2 (\delta g_1^1 + \delta g_2^2)$	

Sector coupled to the metric

The linearized **Einstein-Maxwell equations** in each helicity sector can be written in terms of the **gauge-invariants** :

- h = 1:2 coupled 2nd order ODE's for $\delta X_{1,2}$ and $\delta Y^{1,2}$
- \circ **h** = **0** : 2 coupled 2nd order ODE's for δS_1 and δS_2

The Π 's are extracted from the solutions near the boundary $(z \rightarrow 0)$

$$h = 1: \qquad \delta X_1 = \delta \hat{X}_1 + z^2 \delta \Pi_{X_1} + \cdots, \qquad \delta \Pi_{X_1} \equiv \Pi_{XX}^{\perp} \delta \hat{X}_1 + \Pi_{XY}^{\perp} \delta \hat{Y}^1,$$

Compute **2** solutions and invert the linear relation

$$\left(\Pi_{XX}^{\perp} \Pi_{XY}^{\perp}\right) = \left(\delta\Pi_{X_{1}}^{(1)} \delta\Pi_{X_{1}}^{(2)}\right) \left(\begin{array}{cc}\delta\hat{X}_{1}^{(1)} & \delta\hat{X}_{1}^{(2)}\\\delta\hat{Y}_{1}^{1} & \delta\hat{Y}_{2}^{1}\end{array}\right)^{-1}$$

Hydrodynamic approximation

The long-range behavior of a system near equilibrium is described by hydrodynamics

- → Equilibrium correlators follow a universal long-range structure :
- **Expansion** in $(\omega/T, k/T)$, with transport coefficients
- The hydro modes appear as poles at leading order

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}\left(\omega,\vec{k}\right) = \sigma\left(P_{\lambda\sigma}^{\perp}\omega + P_{\lambda\sigma}^{\parallel}\frac{\omega^{2}-k^{2}}{\omega+i\mathbf{D}k^{2}}\right)\left(1+\mathcal{O}\left(\frac{\omega}{T},\frac{k^{2}}{T^{2}}\right)\right),$$

Conductivity $\partial_{t}J^{0} = D\Delta J^{0}$

Charged current correlators

