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No-hair theorem in General Relativity

• General Relativity coupled to electrodynamics: a stationary
black hole is completely characterized by its mass M, angular
momentum J and electric charge Q (only M if spherical
symmetry and without Maxwell)

• Two such black holes with identical M, J and Q are described
by the exact same Kerr-Newman metric

• They have no hair, i.e., no independent integration constant
other than M, J and Q [P. O. Mazur, hep-th/0101012]
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Scalar-tensor gravity

• Modifying General Relativity is motivated from both theoretical
and observational considerations [E. J. Copeland, M. Sami, S. Tsujikawa,

Int.J.Mod.Phys.D, 2006] [T. Clifton, P. G. Ferreira, A. Padilla, C. Skordis, Phys.Rept., 2012]

• Scalar-tensor gravity: modification of gravity which includes, in
addition to the usual metric tensor field gµν , a non-minimally
coupled scalar field ϕ

• Adds a unique degree of freedom ⇝ both simple and
general [T. Chiba, Phys.Lett.B, 2003]

• Most general scalar-tensor theory with second-order field
equations: Horndeski theory. Healthy generalizations beyond
Horndeski. [J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Phys.Rev.Lett.,

2015] [D. Langlois, K. Noui, JCAP, 2016]
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Previous scalar-tensor solutions

• Stealth solutions, e.g.: [E. Babichev, C. Charmousis, JHEP, 2014]

S [gµν , ϕ] =

∫
d4x

√
−g
{
R + βGµν∂µϕ∂νϕ

}
,

ds2 = Schwarzschild, ϕ = qt + q

∫ √
2Mr

r − 2M
dr

• Non-stealth solutions, e.g. coming from dimensional
reduction of higher-dimensional theory: [P. G. S. Fernandes, P. Carrilho,

T. Clifton, D. J. Mulryne, Phys.Rev.D, 2020]

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2dΩ2, f (r) = 1 +

r2

2α

(
1 −

√
1 +

8αM
r3

)
,

ϕ = qt +

∫ √
q2r2 + f (r)− f (r)

r f (r)
dr [C. Charmousis, A. Lehébel, E. Smyrniotis,

N. Stergioulas, JCAP, 2022]
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Previous scalar-tensor solutions

• Both solutions are hairy because ϕ is non-trivial

• In both cases, q is an arbitrary integration constant, but it
appears only in the scalar field, not in the metric. The metric
is fully determined by its mass ⇝ secondary hair solutions

• In this talk: present a black hole solution with primary hair,
i.e., the metric is parameterized by two independent
integration constants, its mass M and the primary hair q
(which is not the angular momentum J nor the electric charge
Q, since we work in spherical symmetry and without Maxwell)
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Framework

Beyond Horndeski action (ϕµ = ∂µϕ, ϕµν = ∇µ∂νϕ, X = −ϕµϕµ/2):

S =

∫
d4x

√
−g
{
G2 (X ) + G4 (X )R + G4X

[
(□ϕ)2 − ϕµνϕ

µν
]

+ F4 (X ) ϵµνρσϵαβγσϕµϕαϕνβϕργ
}

Static, spherically-symmetric solution:

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2dΩ2,

ϕ = qt + ψ (r)

Linear time-dependence in ϕ is compatible with the symmetries
because the theory is invariant under ϕ→ ϕ+ cst. (shift-symmetric)
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Primary hair solution

Theory functionals depend on two couplings λ (> 0) and η:

G2 = − 8η
3λ2X

2, G4 = 1 − 4η
3
X 2, F4 = η

This theory is solved by the following metric function with two
independent integration constants M and q,

f (r) = 1 − 2M
r

+ ηq4
(
π/2 − arctan (r/λ)

r/λ
+

1
1 + (r/λ)2

)
,

while the scalar field is

ϕ = qt + ψ (r) , ψ′ (r)2 =
q2

f 2 (r)

[
1 − f (r)

1 + (r/λ)2

]
.

q = 0: Schwarzschild, q ̸= 0: departure from Schwarzschild
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f (r) = 1 − 2M
r

+ ηq4
(
π/2 − arctan (r/λ)

r/λ
+

1
1 + (r/λ)2

)
= 1 − 2M

r
+ 2λ2 ηq

4

r2 +O
(

1
r4

)
, r → ∞
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Figure 1: Left: η < 0, unique horizon greater than the Schwarzschild
radius rS = 2M. Right: η > 0, one, two, three or zero horizons, horizon
smaller than Schwarzschild.
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Regular spacetime (black hole or soliton)
For M = πηq4λ/4, the central singularity disappears and all
curvature invariants become infinitely regular:

f (r) = 1 − 4M
πλ

(
arctan (r/λ)

r/λ
− 1

1 + (r/λ)2

)
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Figure 2: Left: Regular BH solutions. Right: regular solitonic solutions.
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Conclusions

• General Relativity black holes are completely characterized by
their mass M, electromagnetic charge Q, angular momentum
J (so only M in vacuum and spherical symmetry)

• Found a black hole with primary hair q in a simple
scalar-tensor theory

• For a particular relation between the mass M and the primary
hair q, the central singularity disappears (regular spacetime)

• Perspective: better understanding of q. Observational
constraints, thermodynamics, ...

Thank you for your attention!
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Case of canonical kinetic term

Theory:

G2 =
2η
λ2X , G4 = 1 + ηX , F4 = − η

4X
Metric function:

f (r) = 1 + ηq2 − 2M
r

+ ηq2π/2 − arctan (r/λ)

r/λ

Scalar field:

ϕ = qt + ψ (r) , ψ′ (r)2 =
q2

f 2 (r)

[
1 − f (r)

1 + (r/λ)2

]
Asymptotic behaviour:

f (r) = 1 + ηq2 − 2M
r

+ ηq2λ
2

r2 +O
(

1
r4

)



Expansion near r = 0

f (r) = 1 − 2M − πηq4λ/2
r

− 2ηq4r2

3λ2 +O
(
r4)


