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Let’s assume vacuum:

(0) _ (0) ~ Sch . . .
Rab = () — gab — gab is the Schwarzschild metric
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BH perturbation in spherical symmetry

For the perturbation we solve R
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BH perturbation in spherical symmetry
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BH perturbation in spherical symmetry

Black box - manipulate the equations
® 7/x polar eqs. - 3x axial egs.

e 2x 1st order polar egs. - 2x 1st order axial egs.
e Definition of master variables
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Black box - manipulate the equations
® 7/x polar eqs. - 3x axial egs.

e 2x 1st order polar egs. - 2x 1st order axial egs.
e Definition of master variables
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BH perturbation in spherical symmetry

Regge-Wheeler potential for axial tensor perturbation
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Zerilli potential for polar tensor perturbation, A = ¢({ + 1) — 2
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Regge, Wheeler 1957, Zerilli 1970
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BH perturbation in slow rotation
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Let’s assume vacuum with slow rotation:

(0) (0) Sch SR, 1 2 SR,2
Rab =0—9 ab — Yab + Tag,, Ta g,



BH perturbation in slow rotation
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Let’s assume vacuum with slow rotation:
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BH perturbation in slow rotation

_ (0) (1) Same ansatz for
Yab = gab CC:gab perturbations!
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Let’s assume vacuum with slow rotation:
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BH perturbation in slow rotation

Black box - manipulate the equations

Pia

® 7/x polar eqs. - 3x axial eqgs.
® 2x 1st order polar eqs. - 2x 1st order axial eqs.

® Definition of master variables
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In the end, there is just a spin modification

Pani 2013, NF 2023



BH perturbation in slow rotation
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In the end, there is just a spin modification also valid at second order in the spin

Pani 2013, NF 2023
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Relation between potentials

Chandrasekhar found the super-potential that generates the RW/Z

potential de
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Chandrasekhar 1975



Relation between potentials

The superpotential still exists at least up to second order in the spin!

with

dw*

Vi) = BWE + By - koW + Kok,

dr,

W= W§ +alV| + a*W,

By = =

Chandrasekhar 1975, NF 2023
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Relation between potentials

Chandra’s superpotential

« \
{ Regge-Wheeler }

{ Zerilli

Chandrasekhar 1975, NF 2023



Relation between potentials

Chandra’s superpotential
generalized to 1st and 2nd order in spin

« \
Regge-Wheeler

Zerilli

The transformation proves isospectrality between the two equations

Chandrasekhar 1975, NF 2023



Relation between RW/Z and Teukolsky

Chandra’s superpotential
generalized to 1st and 2nd order in spin

-« \
{ Regge-Wheeler }
. { Zerilli }

Chandra’s transformation
theory

{ Teukolsky }

Chandrasekhar 1975; 1980, NF 2023




Relation between RW/Z and Teukolsky

Chandra’s superpotential
generalized to 1st and 2nd order in spin

-« \
{ Regge-Wheeler }
. { Zerilli }

Also valid up to 2nd order in
the spin!

Chandra’s transformation
theory

{ Teukolsky }

Chandrasekhar 1975; 1980, NF 2023




Relation between RW/Z and Teukolsky

« \
{ Regge-Wheeler }
. { Zerilli }

Useful for metric reconstruction

{ Teukolsky }

Chandrasekhar 1975; 1980, NF 2023




Conclusions

e We showed how to generalize the Regge-Wheeler and the Zerilli equation
In a

® Chandra’s transformations between RWZ are still applicable, as well as
those to slow-rotating Teukolsky

e Useful for “perturbation of perturbation” problem (second order
perturbations, beyond-GR BHPT, etc...)



Open problem

Kerr metric perturbation conjecture

Is it possible to generalize the Regge-Wheeler and the Zerilli equations at
arbitrary spin, without passing through the Teukolsky formalism?



Thanks for the attention =D



