Action-angle variables of post-Newtonian binary black holes

Sashwat Tanay

LUTH, CNRS/Paris Observatory/Universite Paris Cité

Septième Assemblée Générale du GdR Ondes Gravitationnelles 16 Oct, 2023

In collaboration with L. C. Stein, G. Cho, J. T. Gálvez Ghersi, and R. Samanta

Sashwat Tanay (LUTH, Paris)

Action-angle variables of BBHs

• Stellar mass BBHs: LIGO/LISA sources of GWs.

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.
- Quadrupole formula: $\bar{h}_{ij}(t, \mathbf{x}) \sim \frac{d^2 I_{ij}}{dt^2}$; $I_{ij}(t) = \int x^i x^j T^{00}(t, \mathbf{x}) d^3 x$

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.
- Quadrupole formula: $\bar{h}_{ij}(t, \mathbf{x}) \sim \frac{d^2 I_{ij}}{dt^2}$; $I_{ij}(t) = \int x^i x^j T^{00}(t, \mathbf{x}) d^3 x$
- GWs are functions of black hole trajectories (focus of the talk).

• Post-Newtonian (PN) theory \rightarrow model early inspiral of binary black holes (BBHs).

- Post-Newtonian (PN) theory \rightarrow model early inspiral of binary black holes (BBHs).
- Applicable when BHs move slowly $(v^2/c^2 \ll 1)$.

- Post-Newtonian (PN) theory \rightarrow model early inspiral of binary black holes (BBHs).
- Applicable when BHs move slowly $(v^2/c^2 \ll 1)$.
- Quantities are expanded in v^2/c^2 .

- Post-Newtonian (PN) theory \rightarrow model early inspiral of binary black holes (BBHs).
- Applicable when BHs move slowly $(v^2/c^2 \ll 1)$.
- Quantities are expanded in v^2/c^2 .
- Example: BBH Hamiltonian

$$H = (...) + \frac{1}{c^2}(...) + \frac{1}{c^3}(...) + \frac{1}{c^4}(...)$$

$$0PN \quad 1PN \quad 1.5PN \quad 2PN$$

- Post-Newtonian (PN) theory \rightarrow model early inspiral of binary black holes (BBHs).
- Applicable when BHs move slowly $(v^2/c^2 \ll 1)$.
- Quantities are expanded in v^2/c^2 .
- Example: BBH Hamiltonian

$$H = (...) + \frac{1}{c^2}(...) + \frac{1}{c^3}(...) + \frac{1}{c^4}(...)$$

$$0PN \quad 1PN \quad 1.5PN \quad 2PN$$

• Each factor of $1/c^2 \rightarrow$ one PN order.

Phase space of spinning BBHs

COM FRAME

$$\vec{S}$$
 \vec{P} $\vec{R} = \vec{R_1} - \vec{R_2}$ \vec{P} \vec{P} $\vec{S_1}$ $\vec{S_2}$

Action-angle variables of BBHs

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

• Integrate to find $\{q(t), p(t)\}$

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

• Integrate to find $\{q(t), p(t)\}$ or rather $\left\{ \vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t) \right\}$.

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

- Integrate to find $\{q(t), p(t)\}$ or rather $\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\}$.
- Solutions available for specialized cases:

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

- Integrate to find $\{q(t), p(t)\}$ or rather $\left\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\right\}$.
- Solutions available for specialized cases: $m_1 = m_2$

• *H* gives
$$\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$$
.

- Integrate to find $\{q(t), p(t)\}$ or rather $\left\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\right\}$.
- Solutions available for specialized cases: $m_1 = m_2$, $\vec{S}_{1/2} = 0$

•
$$H$$
 gives $\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$.

- Integrate to find $\{q(t), p(t)\}$ or rather $\left\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\right\}$.
- Solutions available for specialized cases: $m_1=m_2$, $ec{S}_{1/2}=0$, e
 ightarrow 0

•
$$H$$
 gives $\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$.

- Integrate to find $\{q(t), p(t)\}$ or rather $\left\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\right\}$.
- Solutions available for specialized cases: $m_1=m_2$, $\vec{S}_{1/2}=0$, $e \to 0$ $\vec{S}_{1/2} \to 0$.

•
$$H$$
 gives $\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$.

- Integrate to find $\{q(t), p(t)\}$ or rather $\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\}$.
- Solutions available for specialized cases: $m_1=m_2$, $\vec{S}_{1/2}=0$, $e \to 0$ $\vec{S}_{1/2} \to 0$.
- What about the **most general BBH** (with arbitrary spins, masses and eccentricity)?

•
$$H$$
 gives $\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$.

- Integrate to find $\{q(t), p(t)\}$ or rather $\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\}$.
- Solutions available for specialized cases: $m_1=m_2$, $\vec{S}_{1/2}=0$, $e \to 0$ $\vec{S}_{1/2} \to 0$.
- What about the **most general BBH** (with arbitrary spins, masses and eccentricity)? No solutions for a long time.

•
$$H$$
 gives $\{\dot{p} = -\partial H/\partial q, \ \dot{q} = \partial H/\partial p\}$.

- Integrate to find $\{q(t), p(t)\}$ or rather $\left\{\vec{R}(t), \vec{P}(t), \vec{S}_1(t), \vec{S}_2(t)\right\}$.
- Solutions available for specialized cases: $m_1=m_2$, $\vec{S}_{1/2}=0$, $e \to 0$ $\vec{S}_{1/2} \to 0$.
- What about the **most general BBH** (with arbitrary spins, masses and eccentricity)? No solutions for a long time.

• Solutions are crucial for fast GW template construction and data analysis.

• Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$

Action-angles: Canonical transformation (p

 , q

) ↔ (J

 , θ

) exists such that H = H(J

) and {p

 , q

 }(θ_i + 2π) = {p

 , q

 }(θ_i).

- Action-angles: Canonical transformation (p

 , q

) ↔ (J

 , θ

) exists such that H = H(J

) and {p

 , q

 }(θ_i + 2π) = {p

 , q

 }(θ_i).
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$

- Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$ exists such that $H = H(\vec{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}(\theta_i + 2\pi) = \{\vec{p}, \vec{q}\}(\theta_i)$.
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. ⇒

$$\begin{aligned} \dot{\mathcal{J}}_i &= -\partial H / \partial \theta_i = 0 & \implies \mathcal{J}_i \text{ stay constant} \\ \dot{\theta}_i &= \partial H / \partial \mathcal{J}_i \equiv \omega_i (\vec{\mathcal{J}}) & \implies \theta_i = \omega_i (\vec{\mathcal{J}}) t \end{aligned}$$

- Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$ exists such that $H = H(\vec{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}(\theta_i + 2\pi) = \{\vec{p}, \vec{q}\}(\theta_i)$.
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. ⇒

$$\begin{aligned} \dot{\mathcal{J}}_i &= -\partial H / \partial \theta_i = 0 & \implies \mathcal{J}_i \text{ stay constant} \\ \dot{\theta}_i &= \partial H / \partial \mathcal{J}_i \equiv \omega_i(\vec{\mathcal{J}}) & \implies \theta_i = \omega_i(\vec{\mathcal{J}}) t \end{aligned}$$

- Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$ exists such that $H = H(\vec{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}(\theta_i + 2\pi) = \{\vec{p}, \vec{q}\}(\theta_i)$.
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. ⇒

$$\dot{\mathcal{J}}_i = -\partial H / \partial \theta_i = 0 \implies \mathcal{J}_i \text{ stay constant}$$

 $\dot{ heta}_i = \partial H / \partial \mathcal{J}_i \equiv \omega_i(\vec{\mathcal{J}}) \implies \theta_i = \omega_i(\vec{\mathcal{J}}) t$

- Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$ exists such that $H = H(\vec{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}(\theta_i + 2\pi) = \{\vec{p}, \vec{q}\}(\theta_i)$.
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. \implies

$$\dot{\mathcal{J}}_i = -\partial H / \partial heta_i = 0 \implies \mathcal{J}_i \text{ stay constant}$$

 $\dot{ heta}_i = \partial H / \partial \mathcal{J}_i \equiv \omega_i(\vec{\mathcal{J}}) \implies heta_i = \omega_i(\vec{\mathcal{J}})t$

 \bullet Action-angles \rightarrow solution and frequencies.

- Action-angles: Canonical transformation (p

 , q

) ↔ (J

 , θ

) exists such that H = H(J

) and {p

 , q

 }(θ_i + 2π) = {p

 , q

 }(θ_i).
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. ⇒

$$egin{array}{lll} \dot{\mathcal{J}}_i &= -\partial H/\partial heta_i = 0 & \Longrightarrow & \mathcal{J}_i ext{ stay constant} \ \dot{ heta}_i &= \partial H/\partial \mathcal{J}_i \equiv \omega_i(ec{\mathcal{J}}) & \Longrightarrow & heta_i = \omega_i(ec{\mathcal{J}})t \end{array}$$

- \bullet Action-angles \rightarrow solution and frequencies.
- Action-angles can handle perturbations via canonical pert. theory (Goldstein): $(\vec{J}, \vec{\theta})_{old} \rightarrow (\vec{J}, \vec{\theta})_{new}$.

- Action-angles: Canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow (\vec{\mathcal{J}}, \vec{\theta})$ exists such that $H = H(\vec{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}(\theta_i + 2\pi) = \{\vec{p}, \vec{q}\}(\theta_i)$.
- $\mathcal{J}_i = \operatorname{action} \sim p;$ $\theta_i = \operatorname{angle} \sim q$
- Hamilton's eqns. ⇒

$$\mathcal{J}_i = -\partial H / \partial \theta_i = 0 \implies \mathcal{J}_i \text{ stay constant}$$

 $\dot{\theta}_i = \partial H / \partial \mathcal{J}_i \equiv \omega_i(\vec{\mathcal{J}}) \implies \theta_i = \omega_i(\vec{\mathcal{J}}) t$

- \bullet Action-angles \rightarrow solution and frequencies.
- Action-angles can handle perturbations via canonical pert. theory (Goldstein): $(\vec{J}, \vec{\theta})_{old} \rightarrow (\vec{J}, \vec{\theta})_{new}$.

ACTION-ANGLES ARE COOL!.

Sashwat Tanay (LUTH, Paris)

Action-angle variables of BBHs

• Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al - 1966.

• Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al - 1966.

$$H = \underbrace{\left(\frac{P^{2}}{2\mu} - \frac{Gm_{1}m_{2}}{R}\right)}_{\text{Newtonian}} + \frac{1}{c^{2}}F_{1}(\vec{R}, \vec{P}) + \frac{1}{c^{3}}F_{2}\left(\vec{R}, \vec{P}, \vec{S_{1}}, \vec{S_{2}}\right)$$

• Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al - 1966.

- Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al 1966.
- We present all 5 actions & frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351].

- Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al 1966.
- We present all 5 actions & frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351].
- We give a method to construct $\left\{ \vec{R}, \vec{P}, \vec{S}_1, \vec{S}_2 \right\}$ as functions of $(\vec{J}, \vec{\theta})$.

- Spins enter at 1.5PN. 1.5PN Hamiltonian given in Barker et. al 1966.
- We present all 5 actions & frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351].
- We give a method to construct $\left\{ \vec{R}, \vec{P}, \vec{S}_1, \vec{S}_2 \right\}$ as functions of $(\vec{J}, \vec{\theta})$.
- Extendable to higher PN via canonical pert. theory (Goldstein).

• $m \equiv m_1 + m_2$, $\mu \equiv m_1 m_2/m$, $\nu \equiv \mu/m$, $\vec{L} \equiv \vec{R} \times \vec{P}$, $\sigma_1 \equiv (2 + 3m_2/m_1)$, $\sigma_2 \equiv (2 + 3m_1/m_2)$, $\vec{S}_{\text{eff}} \equiv \sigma_1 \vec{S}_1 + \sigma_2 \vec{S}_2$, $\vec{J} = \vec{L} + \vec{S}_1 + \vec{S}_2$.

•
$$m \equiv m_1 + m_2$$
, $\mu \equiv m_1 m_2/m$, $\nu \equiv \mu/m$, $\vec{L} \equiv \vec{R} \times \vec{P}$,
 $\sigma_1 \equiv (2 + 3m_2/m_1)$, $\sigma_2 \equiv (2 + 3m_1/m_2)$, $\vec{S}_{\text{eff}} \equiv \sigma_1 \vec{S}_1 + \sigma_2 \vec{S}_2$,
 $\vec{J} = \vec{L} + \vec{S}_1 + \vec{S}_2$.

•
$$\mathcal{J}_1 = L$$
, $\mathcal{J}_2 = J$, $\mathcal{J}_3 = J_z$.

•
$$m \equiv m_1 + m_2$$
, $\mu \equiv m_1 m_2/m$, $\nu \equiv \mu/m$, $\vec{L} \equiv \vec{R} \times \vec{P}$,
 $\sigma_1 \equiv (2 + 3m_2/m_1)$, $\sigma_2 \equiv (2 + 3m_1/m_2)$, $\vec{S}_{eff} \equiv \sigma_1 \vec{S}_1 + \sigma_2 \vec{S}_2$,
 $\vec{J} = \vec{L} + \vec{S}_1 + \vec{S}_2$.

•
$$\mathcal{J}_1 = L$$
, $\mathcal{J}_2 = J$, $\mathcal{J}_3 = J_z$.

•
$$\mathcal{J}_4 = -\mathcal{J}_1 + \frac{Gm\mu^{3/2}}{\sqrt{-2H}} - \frac{G^2m\mu^3}{c^2\mathcal{J}_1^3} (\vec{S}_{\text{eff}} \cdot \vec{L}) + \frac{Gm}{c^2} \left(\frac{3Gm\mu^2}{\mathcal{J}_1} + \frac{\sqrt{-H} \ \mu^{1/2}(-15+\nu)}{4\sqrt{2}} \right).$$

• $m \equiv m_1 + m_2$, $\mu \equiv m_1 m_2/m$, $\nu \equiv \mu/m$, $\vec{L} \equiv \vec{R} \times \vec{P}$, $\sigma_1 \equiv (2 + 3m_2/m_1)$, $\sigma_2 \equiv (2 + 3m_1/m_2)$, $\vec{S}_{\text{eff}} \equiv \sigma_1 \vec{S}_1 + \sigma_2 \vec{S}_2$, $\vec{J} = \vec{L} + \vec{S}_1 + \vec{S}_2$.

•
$$\mathcal{J}_1 = L$$
, $\mathcal{J}_2 = J$, $\mathcal{J}_3 = J_z$.

•
$$\mathcal{J}_4 = -\mathcal{J}_1 + \frac{Gm\mu^{3/2}}{\sqrt{-2H}} - \frac{G^2m\mu^3}{c^2\mathcal{J}_1^3} (\vec{S}_{\text{eff}} \cdot \vec{L}) + \frac{Gm}{c^2} \left(\frac{3Gm\mu^2}{\mathcal{J}_1} + \frac{\sqrt{-H} \ \mu^{1/2}(-15+\nu)}{4\sqrt{2}} \right).$$

• \mathcal{J}_5 is very, very lengthy.

 $\bullet~$ BBH trajectory $\rightarrow~$ GW templates.

- $\bullet~$ BBH trajectory $\rightarrow~$ GW templates.
- \bullet Finding action-angles \sim finding closed-form solution.

- BBH trajectory \rightarrow GW templates.
- $\bullet\,$ Finding action-angles $\sim\,$ finding closed-form solution.
- We give action-angles-based solution of the most general 1.5PN BBH.

11/12

- BBH trajectory \rightarrow GW templates.
- \bullet Finding action-angles \sim finding closed-form solution.
- We give action-angles-based solution of the most general 1.5PN BBH.
- To do: find 2PN action-angles (via canonical pert. theory),

- BBH trajectory \rightarrow GW templates.
- $\bullet\,$ Finding action-angles $\sim\,$ finding closed-form solution.
- We give action-angles-based solution of the most general 1.5PN BBH.
- **To do:** find 2PN action-angles (via canonical pert. theory), include 2.5PN radiation reaction

- BBH trajectory \rightarrow GW templates.
- $\bullet\,$ Finding action-angles $\sim\,$ finding closed-form solution.
- We give action-angles-based solution of the most general 1.5PN BBH.
- **To do:** find 2PN action-angles (via canonical pert. theory), include 2.5PN radiation reaction (method of variation of constants).

Refs:

- Papers: 2012.06586, 2110.15351, 2210.01605.
- Lecture notes: 2206.05799
- Mathematica package: github.com/sashwattanay/BBH-PN-Toolkit
- • YouTube video on the package
- Contact: sashwat.tanay@obspm.fr

Thank you! Questions?