First results from a LISA end-to-end simulation and analysis pipeline

Jean-Baptiste Bayle

GDR Ondes Gravitationnelles Meeting – October 2023

Aurélien Hees, Christian Chapman-Bird, Graham Woan, Marc Lilley, Olaf Hartwig

LISA in one (busy) slide

• ESA-led space-based mHz GW observatory with launch planned in the mid-2030s

LISA in one (busy) slide

• ESA-led space-based mHz GW observatory with launch planned in the mid-2030s

LISA in one (busy) slide

• ESA-led space-based mHz GW observatory with launch planned in the mid-2030s

Laser frequency instabilities swamp the measurements

Frequency in Hz

Laser frequency instabilities swamp the measurements

- Orbital dynamics cannot maintain equal arm lengths
- Laser noise many orders of magnitude above expected signals
- TDI synthesizes equal-arm interferometer measurements on ground
- Requires good knowledge of inter-spacecraft distances

- Laser frequency instabilities swamp the measurements
- Heterodyne interferometry
 - Orbital dynamics implies high spacecraft relative motion
 - Results in time-varying Doppler-shifts of laser beams, i.e., beating interferometric signals
 - Main interferometric data are beatnote rapidly-evolving phases frequencies
 - GWs (and noises) as 100 nHz signals in these MHz frequencies

- Laser frequency instabilities swamp the measurements
- Heterodyne interferometry
- Measurements made in different time frames
 - The spacecraft experience different proper times (Sun's gravitational potential) -
 - They each host a clock, used to drive the phasemeter (sampling and frequency reference)
 - Clocks are not actively synchronize, so they have (in-band) jitter and (long-term) drifts
 - Needs to estimate a relationship between the onboard clock times and a global time, then carefully resynchronize the measurements (very stringent requirements from TDI)

- Laser frequency instabilities swamp the measurements
- Heterodyne interferometry
- Measurements made in different time frames
- And others...
- The analysis pipeline will include an L0-L1 step for these algorithms

Test the integration of (a first version of) the L0-L1-L2 sections

L1-L2 PIPELINE (param. estimation)

L2 DATA (posteriors)

L2-L3 PIPELINE (catalog making) L3 DATA (catalog)

- Laser frequency instabilities swamp the measurements
- Heterodyne interferometry
- Measurements made in different time frames
- And others...
- The analysis pipeline will include an L0-L1 step for these algorithms

• Test the integration of (a first version of) the L0-L1-L2 sections

Method

Purpose and method

- Simple configuration to test interplays and interfaces
 - Incrementally increase complexity to study the impact of instrumental effects
- Figures of merit as performance indicators on L1 and L2
- Results of a study carried out for the Mission Adoption Review

Simulation of L0 data

- Full time-domain simulations with LISA Simulation Suite
- Keplerian orbits (spacecraft state vectors, proper times, light travel times) [Bayle+22]
- Simple (almost monochromatic) Galactic binary signal
 - Bright verification binary (scaled to keep SNR irrespect. of sim. size) [Kupfer+23]
 - Response on a single laser link as frequency shift [Bayle+23]
- Instrumental simulation [Bayle+22, BayleHartwig23]
 - Propagation of modulated laser beams and coupling with GW signals and noises (laser noise, test-mass and readout noises, other subdominant noises)
 - Interferometric beatnotes, including clock effects and simple onboard processing
 - Other measurements (sideband beatnotes, spacecraft ranging, time couples)
 - Simulation performed at 16 Hz, telemetry at 4 Hz
- Ground observation of spacecraft

Simulation of LO data

Reference GW signal

L0 dataset content

Parameter	Reference value	Quantity	Symbol	Unit	Cadence
Strain amplitude Frequency Frequency derivative Initial phase	$\begin{array}{ll} \mathrm{le} & A = 6.3 \times 10^{-23} \\ \mathrm{cy} & f_0 = 3.5 \times 10^{-3} \mathrm{Hz} \\ \mathrm{ve} & \dot{f} = 5.6 \times 10^{-17} \mathrm{Hz} \mathrm{s}^{-1} \\ \mathrm{se} & \phi_0 = \pi/3 \\ \mathrm{se} & \iota = \pi/3 \\ \mathrm{le} & \psi = \pi/4 \\ \mathrm{le} & \beta = 0.82 \\ \mathrm{le} & \lambda = 5.15 \end{array}$	6 ISI carrier beatnote freq. 6 RFI carrier beatnote frequencies 6 TMI carrier beatnote frequencies	$ ext{isi}_{ij, ext{c}}^{\hat{ au}_i}(au) \ ext{rfi}_{ij, ext{c}}^{\hat{ au}_i}(au) \ ext{tmi}_{ij, ext{c}}^{\hat{ au}_i}(au) ext{}$	$egin{array}{c} \mathrm{Hz} \\ \mathrm{Hz} \\ \mathrm{Hz} \end{array}$	$4\mathrm{Hz}$ $4\mathrm{Hz}$ $4\mathrm{Hz}$
Inclination Polarization angle Ecliptic latitude Ecliptic longitude		 6 ISI upper sideband beatnote freq. 6 RFI upper sideband beatnote freq. 6 ISI MPRs 	$\operatorname{isl}_{ij,\mathrm{c}}^{\hat{\tau}_i}(au) \ \operatorname{isl}_{ij,\mathrm{sb}}^{\hat{ au}_i}(au) \ \operatorname{rfl}_{ij,\mathrm{sb}}^{\hat{ au}_i}(au) \ \operatorname{MPR}_{ij}^{\hat{ au}_i}(au)$	Hz Hz s	$4 \mathrm{Hz}$ $4 \mathrm{Hz}$ $4 \mathrm{Hz}$
		3 spacecraft reconstructed positions 3 spacecraft reconstructed velocities 6 time correlations	$ \begin{array}{l} \mathbf{x}_{i}^{t}(\tau) \\ \mathbf{v}_{i}^{t}(\tau) \\ \Delta \hat{\tau}_{i}^{t}(\tau) \end{array} $	${ m m} { m m} { m s}^{-1} { m s}$	$10^{-5}{ m Hz}\ 10^{-5}{ m Hz}\ 1{ m day}^{-1}$

LO-L1 pipeline

- Use L0 total beatnote frequencies and apply synchronization after computing TDI [Hartwig+22]
- Combine auxiliary measurements and ground-based observations to estimate the delays to be applied in TDI, as well as drifts between clocks
- Resynchronize combinations on a global time frame, where the templates are generated

 2^{nd} -gen.

3 space

3 space

 $3\ {\rm reconstructed}\ {\rm t}$

Quantity	Symbol	Units	Cadence
Michelson TDI combinations	$X^t(\tau), Y^t(\tau), Z^t(\tau)$	Hz	$4\mathrm{Hz}$
6 reconstructed LTTs	$\mathrm{LTT}_{ij}^t(\tau)$	\mathbf{S}	$1{ m day}^{-1}$
craft reconstructed positions	$\mathbf{x}_{i}^{t}(au)$	m	$1{ m day}^{-1}$
craft reconstructed velocities	$\mathbf{v}_{i}^{t}(au)$	m	$1{ m day}^{-1}$
ime correlations (deviations)	$\Delta \hat{ au}_i^t(au)$	\mathbf{S}	$1{ m day}^{-1}$

Parameter estimation

Assume Gaussian stationary test-mass and readout noises in Fourier XYZ

$$d_{i}(t) = h_{i}(t) + n_{i}(t), \quad p(\vec{\mathbf{d}}|\vec{\theta}) = \prod_{k} \frac{1}{\sqrt{(2\pi)^{3} \det \mathbf{C}_{ij,k}}} \exp\left\{-\frac{1}{2} [\tilde{d}_{i,k} - \tilde{h}_{i,k}(\vec{\theta})]^{\dagger} \mathbf{C}_{ij,k}^{-1} [\tilde{d}_{j,k} - \tilde{h}_{j,k}(\vec{\theta})]\right\},$$

• Use 3-day simulation (memory constraints), and therefore equal constant arm approximation holds for response function and noise models

$$S_{XX}(\omega) = 64\sin^2(\omega L)\sin^2(2\omega L)(S_{OMS}(\omega) + [3 + \cos(2\omega L)]S_{acc}(\omega)),$$

$$S_{XY}(\omega) = -16\sin(\omega L) \, \mathrm{s}$$

- Templates computed with FastGB [Cornish+07]
- Nessai [Williams21] as to sample posterior distributions using normalizing flows
- For rapid convergence, we fix sky localization angles (poorly constrained over 3 days)

 $\sin^3(2\omega L)(S_{\rm OMS}(\omega) + 4S_{\rm acc}(\omega)),$

Results

Noise suppression performance

pipeline to below the global noise allocation budget

Check that the various noises included in the simulation are reduced by the L0-L1

Noise modeling performance

 Check that our noise model (stationary testmass and readout noises) describes the noise-only L1 dataset sufficiently well

Posterior distributions

- Injected values lie in the bulk of the posteriors for all parameters
 - Sky localization angles and source frequency derivative fixed to their true values and not represented here
- Correlations are as expected
 - Strong positive correlation between amplitude and inclination angle
 - Weak correlation between frequency and phase
 - Degenerate modes for phase and polarization angle

Analysis model consistency

- p-p plot built from 128 injections
- Confirms that obtained posteriors are consistent with the data, i.e., that our assumptions regarding the performance of the instrument are in agreement with the simulations
- Excursions of phase and inclination angles to 3σ not worrying but will be investigated

Takeaways and outlook

• We developed an end-to-end demonstration pipeline to integrate and validate critical methods used in LISA data processing and source parameter estimation

All performance indicators for L1 and L2 data are in the green

- The L0-L1 pipeline is able to reduce noise to below the requirements
- We are able to obtain reasonable param. posteriors for a single bright Galactic binary
- Our analysis model provides a good description of our data
- This work will be continued and the pipeline will be used to systematically explore the impact of individual noise sources and modeling errors; in particular we want to
 - Simulate longer datasets
 - Estimate all parameters, including sky localization and binary frequency derivative
 - Include more noise terms in the simulation (in particular tilt-to-length effects)
 - Perform studies on other types of sources