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Introduction

When dealing with the propagation of gravitational waves (GW), the linear model
is often sufficient.

But during the first instants of the Universe [Rubakov et al., 1982] or near some
black holes [Yang et al., 2015] some high amplitude GW were produced.

As non-linear interactions lead to turbulent cascades, we aim to study how it
occurs for GW. For that purpose, we base our approach on wave turbulence
[Galtier & Nazarenko, PRL, 2017].
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Model assumptions

The Universe is initially flat, empty Tµν = 0 and without cosmological
constant Λ = 0:

Rµν = 0.

There is a reference frame (t, x , y , z) where the metric is diagonal and ∂z is
a Killing field [Hadad and Zakharov, 2014]:

gµν =


−e−2φ(1 + γ)2 0 0 0

0 e−2φ(1 + β)2 0 0
0 0 e−2φ(1 + α)2 0
0 0 0 e2φ

 .

The field φ has small amplitude oscillation:

|φ| ∝ ε ≪ 1.
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Developpement of Einstein’s equation

At linear order, we have:

(∂tt − ∂xx − ∂yy ) φ := □φ = 0.

At first non-linear order, we have dynamical equation:

□φ = −∂t [(α + β − γ) ∂tφ]+∂x [(α − β + γ) ∂x φ]+∂y [(−α + β + γ) ∂y φ] ,

and the constraint equations:

∂x ∂tα = −2∂tφ∂x φ, ∂y ∂tβ = −2∂tφ∂x φ, ∂x ∂y γ = −2∂x φ∂y φ.
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Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables:

as(k, t) = 1
ε

(√
k
2 φ̂(k, t) + is√

2k
∂t φ̂(k, t)

)
e isωkt with s = ±1 and ωk = k.

We combine the expanded Einstein’s equations to get their evolution. It can be
written as the standard form:

∂tas(k) = ε2
∫
R6

∑
s1,s2,s3

Lss1s2s3
kk1k2k3

as1(k1)as2(k2)as3(k3) e iΩ0
123t δ0

123(k)
3∏

i=1
d2ki ,

where: Lss1s2s3
kk1k2k3

the interaction coefficient, Ω0
123 = sk − s1k1 − s2k2 − s3k3 and

δ0
123(k) = δ(k − k1 − k2 − k3). They define the resonant manifold.

Main objective: to derive the evolution of the statistical mean of the wave
action: n(k) = ⟨as(k)a−s(−k)⟩.
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The multiple time scale method

We introduce a set of time variables: T0 = t, T2 = ε2t, T4 = ε4t, . . . so that:

as(k) = as
0(k) + ε2as

2(k) + ε4as
4(k) + . . .

With these definitions, we obtain the following expansion:(
∂T0 + ε2∂T2 + ε4∂T4 + . . .

) (
as

0(k) + ε2as
2(k) + ε4as

4(k) + . . .
)

= ε2
∫
R6

∑
s1,s2,s3

Lss1s2s3
kk1k2k3

(
as1

0 (k1) + ε2as1
2 (k1) + . . .

) (
as2

0 (k2) + ε2as2
2 (k2) + . . .

)
×
(
as3

0 (k3) + ε2as3
2 (k3) + . . .

)
δ0

123(k) e iΩ0
123T0

3∏
i=1

d2ki .

We get the evolution of as
0(k), as

2(k), . . . by identifying the different power of ε.

Their time integration introduce seculars drifts (terms ∝ T0 or ∝ T 2
0 ).
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The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.

This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The basics of the derivation
The next step is to compute the second order moments:

⟨as(k)a−s(−k)⟩ = ⟨as
0(k)a−s

0 (−k)︸ ︷︷ ︸
=n(k)

⟩+ϵ2⟨as
2(k)a−s

0 (−k)+as
0(k)a−s

2 (−k)⟩+ε4(. . . )+. . .

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

∂T0n(k) = 0;

∂T2n(k) = 0;

and:

∂T4n(k) = 36π

∫
R6

∑
s1,s2,s3

s
∣∣Lss1s2s3

kk1k2k3

∣∣2( s
n(k) − s1

n(k1) − s2
n(k2) − s3

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ0

123(ω)δ0
123(k)

3∏
i=1

d2ki .

B. Gay (LPP) GWT - MTSA 16/10/2023 6 / 9



The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

∂tn(k) = 36πϵ4
∫
R6

∣∣Ls−sss
k−k1k2k3

∣∣2( 1
n(k) + 1

n(k1) − 1
n(k2) − 1

n(k3)

)
× n(k)n(k1)n(k2)n(k3)δ01

23(ω)δ01
23(k)

3∏
i=1

d2ki .

Assuming isotropic turbulence, exact solutions can be found. They have non-zero
constant fluxes so they are turbulent cascades:
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n(k) ∝ (−ζ)1/3 k−2/3︸ ︷︷ ︸
inverse cascade in wave action

and n(k) ∝ ϵ1/3k−1.︸ ︷︷ ︸
direct cascade in energy
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Numerical results

First numerical results on GPU (DNS, 1024 × 1024):
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Conclusion

We aim to describe the weakly non linear regime of gravitational waves using
statistical and analytical tools [Gay et al., in prep.], in order to predict the
existence of a dual cascade numerically observed.

Further works need to be performed:

How to generalize this method to a more general model? What about the
other polarization?

What about the strong turbulent regime? Is there a link with inflation ?
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