Gravitational Wave Turbulence

- Multiple Time Scale Analysis -

Benoit Gay!  Sébastien Galtier?
!Laboratoire de Physique des Plasmas

GdR Ondes Gravitationnelles

@ Ondes ravtationnelies % /ﬁ/'[{ /_D



Introduction

When dealing with the propagation of gravitational waves (GW), the linear model
is often sufficient.
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Introduction

When dealing with the propagation of gravitational waves (GW), the linear model
is often sufficient.

But during the first instants of the Universe [Rubakov et al., 1982] or near some
black holes [Yang et al., 2015] some high amplitude GW were produced.

As non-linear interactions lead to turbulent cascades, we aim to study how it

occurs for GW. For that purpose, we base our approach on wave turbulence
[Galtier & Nazarenko, PRL, 2017].
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Model assumptions

@ The Universe is initially flat, empty T,, = 0 and without cosmological
constant A = 0:
Ry, = 0.
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Model assumptions

@ The Universe is initially flat, empty T,, = 0 and without cosmological
constant A = 0:
Ry, = 0.

@ There is a reference frame (t, x, y, z) where the metric is diagonal and 9, is
a Killing field [Hadad and Zakharov, 2014]:

—e72(1 + 7)? 0 0 0

B 0 e 2%(1+ B)? 0 0

B = 0 0 e2(1+a) 0
0 0 0 e%?
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Model assumptions

@ The Universe is initially flat, empty T,, = 0 and without cosmological
constant A = 0:
Ry, = 0.

@ There is a reference frame (t, x, y, z) where the metric is diagonal and 9, is
a Killing field [Hadad and Zakharov, 2014]:

—e72(1 + 7)? 0 0 0

B 0 e 2%(1+ B)? 0 0

B = 0 0 e2(1+a) 0
0 0 0 e%?

@ The field ¢ has small amplitude oscillation:

lp] xe < 1.
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Developpement of Einstein’s equation

@ At linear order, we have:

((9tt — 8XX — 8yy) Y = DQO =0.
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Developpement of Einstein’s equation

@ At linear order, we have:
((9tt — 8XX — 8yy) Y = DQO = O
@ At first non-linear order, we have dynamical equation:

Op = =0 [(a+ B —7) 0ep]+0x [(a — B+ 7) Oxp]+0y [(—a + B +7) Oy¢] s

and the constraint equations:

OxO0rax = =20:p0xp,  0y0:f = —20rp0xp,  0x0yy = —20xp0y .
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Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables:

1 k is .
a*(k,t) =~ \/>Ak,t + ——0,0(k, t) | €% with s = +1 and wy = k.
()6<2¢()@t¢( )) k
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Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables
1 k is )
Sk,t — \/>A k,t 78/\k7t Iswyt th _il d —k
(k, t) 6( 2«,0( )-i-mt(p( )>e with s and wy

We combine the expanded Einstein’s equations to get their evolution. It can be
3

k) T d%i,
i=1

written as the standard form
.~0 .
ki)a”(k2)a* (k3) e/t %3

— - E 5515253
8ta =& / ka1k2k3
51,52,53

where: Lifjjﬁi the interaction coefficient, 293 = sk — s1k; — spko — s3k3 and
8%,5(k) = d(k — k1 — ko — k3). They define the resonant manifold.
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Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables
1 k is )
Sk,t — \/>A k7t 78Ak7t Iswyt th _i]. d —k
(k, t) s( 2«,0( )+mt<p( )>e with s and wy

We combine the expanded Einstein’s equations to get their evolution. It can be
3

written as the standard form
Oea*(k) = ¢ / S o (ki)a® (ka)a® (k) et o0, (k) [T d%ks,
51,52,53 i=1
where: Lifjjﬁi the interaction coefficient, 293 = sk — s1k; — spko — s3k3 and
8%,5(k) = d(k — k1 — ko — k3). They define the resonant manifold.

Main objective: to derive the evolution of the statistical mean of the wave
(a°(k)a—(=k)).

action: n(k) =
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The multiple time scale method

We introduce a set of time variables: Ty = t, T, = €%t, T4 = £*t,... so that:

a*(k) = a5(k) + e%a5(k) + *aj(k) + . ..
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The multiple time scale method

We introduce a set of time variables: Ty = t, T, = €%t, T4 = £*t,... so that:
a*(k) = a5(k) + e%a5(k) + *aj(k) + . ..
With these definitions, we obtain the following expansion:
(01, + 207, + %07, +...) (3§(k) + 2a5(k) + c*aj(k) +...)
/ > Lk, (38 (ka) +2%a3 (ka) + ) (a5 (k) + €2 S?(kz) )

51,52,53
x (a5 (ka) + a5 (ks) 4. ) 0P (k) €T Hd2
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The multiple time scale method

We introduce a set of time variables: Ty = t, T, = €%t, T4 = £*t,... so that:

a*(k) = a5(k) + e%a5(k) + *aj(k) + . ..
With these definitions, we obtain the following expansion:
(01, + 207, + %07, +...) (3§(k) + 2a5(k) + c*aj(k) +...)
/ > Lk, (38 (ka) +2%a3 (ka) + ) (a5 (k) + €2 S?(kz) )

51,52,53

x (a3 (k3) + £2a3 (ks) + ... ) 0%3(K) e/%iaaTo Hd2

We get the evolution of a§(k), a5(k), ... by identifying the different power of .
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The multiple time scale method

We introduce a set of time variables: Ty = t, T, = €%t, T4 = £*t,... so that:
a*(k) = a5(k) + e%a5(k) + *aj(k) + . ..
With these definitions, we obtain the following expansion:
(01, + 207, + %07, +...) (3§(k) + 2a5(k) + c*aj(k) +...)
/ > Lk, (38 (ka) +2%a3 (ka) + ) (a5 (k) + €2 S?(kz) )

51,52,53
% (a3 (ks) + £2a3 (ks) +...) 0%s(k) im0 Hd2

We get the evolution of a§(k), a5(k), ... by identifying the different power of .

Their time integration introduce seculars drifts (terms oc Tg or o< Ty2).
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The basics of the derivation

The next step is to compute the second order moments:
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The basics of the derivation

The next step is to compute the second order moments:

(a*(k)a~*(—k)) = (aj(k)aq *(—k))+¢*(a5(k)a *(—k)+aj(k)ay *(—k))+e*(... )+ ..
—_————

=n(k)
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The basics of the derivation

The next step is to compute the second order moments:

(a*(k)a~*(—k)) = (aj(k)aq *(—k))+e*(a5(k)ag *(—k)+a5(k)ay *(—k))+e*(
—_————

)
=n(k)

We impose its boundedness in time at any order: we cancel the secular drifts.
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The basics of the derivation

The next step is to compute the second order moments:
(a°(k)a~=(—k)) = (ag(k)a; *(—k))+¢*(a3(k)ay *(—k)+ag(k)a; *(—k))+e* (... )+
—_————
=n(k)

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

6T0 n(k) = 0;
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The basics of the derivation

The next step is to compute the second order moments:

(a*(k)a™*(—k)) = (aj(k)ag *(—k))+€*(a5(k)ag *(—k)+ag(k)ay *(—k))+e*(... )+. ..
=n(k)

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

6T0 n(k) = 0;

or,n(k) =0;
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The basics of the derivation

The next step is to compute the second order moments:
(a°(k)a~=(—k)) = (ag(k)a; *(—k))+¢*(a3(k)ay *(—k)+ag(k)a; *(—k))+e* (... )+
—_————
=n(k)

We impose its boundedness in time at any order: we cancel the secular drifts.
This gives us:

6T0 n(k) = 0;
or,n(k) =0;
and:
551553 S S1 . 2 . S3
ornt 3“/22“wm( W e e )

n()n(ka)n(k2)n(is)d8s ()0%s(k) [ s
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The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

5§—SSS 1 1 1 1
den(k) = 36me* / [ ( (k) + n(ki) n(ka) (k3)> s
x n(k)n(ky)n(kz)n(ks)69 (w H
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The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

5§—SSS 1 1 1 1
den(k) = 36me* / [ ( (k) + n(ki) n(ka) (k3)> s
x n(k)n(ky)n(kz)n(ks)69 (w H

Assuming isotropic turbulence, exact solutions can be found. They have non-zero
constant fluxes so they are turbulent cascades:
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The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

§—Sss 1 1 1 1
d:n(k) = 36me* / "—k k1k2k3 ( (k) * n(ky) (kz) - (k3)) 3
x n(k)n(k1)n(kz)n(ks)o93 H

Assuming isotropic turbulence, exact solutions can be found. They have non-zero
constant fluxes so they are turbulent cascades:

n(k) oc (—=¢O)"* k=23 and  n(k) x /3K 1.
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The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

S§—SSS 1 1 1 1
den(k) = 36me* / [ ( (k) + n(ki)  n(ka) (k3)) 3
x n(k)n(ky)n(kz)n(ks)69 (w H

Assuming isotropic turbulence, exact solutions can be found. They have non-zero
constant fluxes so they are turbulent cascades:

n(k) oc (=) k=23 and (k) o /3L,

inverse cascade in wave action
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The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

4 5—sss 2 1 1 — 1 - !
Orn(k) = 36me /R6 ’Lk7k1k2k3’ (n(k) + n(ky) (kz) (k3)> 3
x n(k)n(ks)n(kz)n(ks)5%5 ()35 (k) ] | dki.

i=1

Assuming isotropic turbulence, exact solutions can be found. They have non-zero
constant fluxes so they are turbulent cascades:

n(k) o (=¢)* k=23 and n(k) o /31,
~—_— ——
inverse cascade in wave action direct cascade in energy
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Numerical results

First numerical results on GPU (DNS, 1024 x 1024):
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Conclusion

We aim to describe the weakly non linear regime of gravitational waves using
statistical and analytical tools [Gay et al., in prep.], in order to predict the
existence of a dual cascade numerically observed.

Further works need to be performed:

@ How to generalize this method to a more general model? What about the
other polarization?

@ What about the strong turbulent regime? Is there a link with inflation ?
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