Gravitational Wave Turbulence

- Multiple Time Scale Analysis -

Benoît Gay ${ }^{1}$ Sébastien Galtier ${ }^{1}$
${ }^{1}$ Laboratoire de Physique des Plasmas
GdR Ondes Gravitationnelles

Introduction

When dealing with the propagation of gravitational waves (GW), the linear model is often sufficient.

Introduction

When dealing with the propagation of gravitational waves (GW), the linear model is often sufficient.

But during the first instants of the Universe [Rubakov et al., 1982] or near some black holes [Yang et al., 2015] some high amplitude GW were produced.

Introduction

When dealing with the propagation of gravitational waves (GW), the linear model is often sufficient.

But during the first instants of the Universe [Rubakov et al., 1982] or near some black holes [Yang et al., 2015] some high amplitude GW were produced.

As non-linear interactions lead to turbulent cascades, we aim to study how it occurs for GW. For that purpose, we base our approach on wave turbulence [Galtier \& Nazarenko, PRL, 2017].

Model assumptions

- The Universe is initially flat, empty $T_{\mu \nu}=0$ and without cosmological constant $\Lambda=0$:

$$
R_{\mu \nu}=0 .
$$

Model assumptions

- The Universe is initially flat, empty $T_{\mu \nu}=0$ and without cosmological constant $\Lambda=0$:

$$
R_{\mu \nu}=0 .
$$

- There is a reference frame (t, x, y, z) where the metric is diagonal and ∂_{z} is a Killing field [Hadad and Zakharov, 2014]:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-e^{-2 \varphi}(1+\gamma)^{2} & 0 & 0 & 0 \\
0 & e^{-2 \varphi}(1+\beta)^{2} & 0 & 0 \\
0 & 0 & e^{-2 \varphi}(1+\alpha)^{2} & 0 \\
0 & 0 & 0 & e^{2 \varphi}
\end{array}\right) .
$$

Model assumptions

- The Universe is initially flat, empty $T_{\mu \nu}=0$ and without cosmological constant $\Lambda=0$:

$$
R_{\mu \nu}=0 .
$$

- There is a reference frame (t, x, y, z) where the metric is diagonal and ∂_{z} is a Killing field [Hadad and Zakharov, 2014]:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-e^{-2 \varphi}(1+\gamma)^{2} & 0 & 0 & 0 \\
0 & e^{-2 \varphi}(1+\beta)^{2} & 0 & 0 \\
0 & 0 & e^{-2 \varphi}(1+\alpha)^{2} & 0 \\
0 & 0 & 0 & e^{2 \varphi}
\end{array}\right) .
$$

- The field φ has small amplitude oscillation:

$$
|\varphi| \propto \varepsilon \ll 1
$$

Developpement of Einstein's equation

- At linear order, we have:

$$
\left(\partial_{t t}-\partial_{x x}-\partial_{y y}\right) \varphi:=\square \varphi=0 .
$$

Developpement of Einstein's equation

- At linear order, we have:

$$
\left(\partial_{t t}-\partial_{x x}-\partial_{y y}\right) \varphi:=\square \varphi=0
$$

- At first non-linear order, we have dynamical equation:

$$
\square \varphi=-\partial_{t}\left[(\alpha+\beta-\gamma) \partial_{t} \varphi\right]+\partial_{x}\left[(\alpha-\beta+\gamma) \partial_{x} \varphi\right]+\partial_{y}\left[(-\alpha+\beta+\gamma) \partial_{y} \varphi\right]
$$

and the constraint equations:

$$
\partial_{x} \partial_{t} \alpha=-2 \partial_{t} \varphi \partial_{x} \varphi, \quad \partial_{y} \partial_{t} \beta=-2 \partial_{t} \varphi \partial_{x} \varphi, \quad \partial_{x} \partial_{y} \gamma=-2 \partial_{x} \varphi \partial_{y} \varphi
$$

Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables:

$$
a^{s}(\mathbf{k}, t)=\frac{1}{\varepsilon}\left(\sqrt{\frac{k}{2}} \hat{\varphi}(\mathbf{k}, t)+\frac{i s}{\sqrt{2 k}} \partial_{t} \hat{\varphi}(\mathbf{k}, t)\right) e^{i s \omega_{\mathbf{k}} t} \text { with } s= \pm 1 \text { and } \omega_{\mathbf{k}}=k
$$

Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables:

$$
a^{s}(\mathbf{k}, t)=\frac{1}{\varepsilon}\left(\sqrt{\frac{k}{2}} \hat{\varphi}(\mathbf{k}, t)+\frac{i s}{\sqrt{2 k}} \partial_{t} \hat{\varphi}(\mathbf{k}, t)\right) e^{i s \omega_{k} t} \text { with } s= \pm 1 \text { and } \omega_{\mathbf{k}}=k .
$$

We combine the expanded Einstein's equations to get their evolution. It can be written as the standard form:

$$
\partial_{t} a^{s}(\mathbf{k})=\varepsilon^{2} \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} \mathbf{L}_{\mathbf{k} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s s_{1} s_{3}} a^{s_{1}}\left(\mathbf{k}_{1}\right) a^{s_{2}}\left(\mathbf{k}_{2}\right) a^{s_{3}}\left(\mathbf{k}_{3}\right) e^{i S_{123}^{0} t} \delta_{123}^{0}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i}
$$

where: $\mathbf{L}_{\mathbf{k}_{1} k_{1} k_{2} k_{3} s_{3} s_{3}}^{s{ }_{2}}$ the interaction coefficient, $\Omega_{123}^{0}=s k-s_{1} k_{1}-s_{2} k_{2}-s_{3} k_{3}$ and $\delta_{123}^{0}(\mathbf{k})=\delta\left(\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}-\mathbf{k}_{3}\right)$. They define the resonant manifold.

Wave Turbulence approach: a plunge into Fourier space

We introduce the normal variables:

$$
a^{s}(\mathbf{k}, t)=\frac{1}{\varepsilon}\left(\sqrt{\frac{k}{2}} \hat{\varphi}(\mathbf{k}, t)+\frac{i s}{\sqrt{2 k}} \partial_{t} \hat{\varphi}(\mathbf{k}, t)\right) e^{i s \omega_{k} t} \text { with } s= \pm 1 \text { and } \omega_{\mathbf{k}}=k .
$$

We combine the expanded Einstein's equations to get their evolution. It can be written as the standard form:

$$
\partial_{t} a^{s}(\mathbf{k})=\varepsilon^{2} \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} \mathbf{L}_{\mathbf{k k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s_{1} s_{5} s_{3}} a^{s_{1}}\left(\mathbf{k}_{1}\right) a^{s_{2}}\left(\mathbf{k}_{2}\right) a^{s_{3}}\left(\mathbf{k}_{3}\right) e^{i S_{123}^{0} t} \delta_{123}^{0}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i}
$$

where: $\mathbf{L}_{\mathbf{k}_{1} k_{1} k_{2} k_{3} s_{3} s_{3}}^{s{ }_{2}}$ the interaction coefficient, $\Omega_{123}^{0}=s k-s_{1} k_{1}-s_{2} k_{2}-s_{3} k_{3}$ and $\delta_{123}^{0}(\mathbf{k})=\delta\left(\mathbf{k}-\mathbf{k}_{1}-\mathbf{k}_{2}-\mathbf{k}_{3}\right)$. They define the resonant manifold.

Main objective: to derive the evolution of the statistical mean of the wave action: $n(\mathbf{k})=\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle$.

The multiple time scale method

We introduce a set of time variables: $T_{0}=t, T_{2}=\varepsilon^{2} t, T_{4}=\varepsilon^{4} t, \ldots$ so that:

$$
a^{s}(\mathbf{k})=a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots
$$

The multiple time scale method

We introduce a set of time variables: $T_{0}=t, T_{2}=\varepsilon^{2} t, T_{4}=\varepsilon^{4} t, \ldots$ so that:

$$
a^{s}(\mathbf{k})=a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots
$$

With these definitions, we obtain the following expansion:

$$
\begin{aligned}
& \left(\partial_{T_{0}}+\varepsilon^{2} \partial_{T_{2}}+\varepsilon^{4} \partial_{T_{4}}+\ldots\right)\left(a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots\right) \\
& =\varepsilon^{2} \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} \mathbf{L}_{\mathbf{k k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s s_{1} s_{3}}\left(a_{0}^{s_{1}}\left(\mathbf{k}_{1}\right)+\varepsilon^{2} a_{2}^{s_{1}}\left(\mathbf{k}_{1}\right)+\ldots\right)\left(a_{0}^{s_{2}}\left(\mathbf{k}_{2}\right)+\varepsilon^{2} a_{2}^{s_{2}}\left(\mathbf{k}_{2}\right)+\ldots\right) \\
& \\
& \quad \times\left(a_{0}^{s_{3}}\left(\mathbf{k}_{3}\right)+\varepsilon^{2} a_{2}^{s_{3}}\left(\mathbf{k}_{3}\right)+\ldots\right) \delta_{123}^{0}(\mathbf{k}) e^{i S_{123}^{0} T_{0}} \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

The multiple time scale method

We introduce a set of time variables: $T_{0}=t, T_{2}=\varepsilon^{2} t, T_{4}=\varepsilon^{4} t, \ldots$ so that:

$$
a^{s}(\mathbf{k})=a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots
$$

With these definitions, we obtain the following expansion:

$$
\begin{aligned}
& \left(\partial_{T_{0}}+\varepsilon^{2} \partial_{T_{2}}+\varepsilon^{4} \partial_{T_{4}}+\ldots\right)\left(a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots\right) \\
& =\varepsilon^{2} \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} \mathbf{L}_{\mathbf{k k}_{1} k_{2} \mathbf{k}_{3}}^{s_{1} s_{3} z_{3}}\left(a_{0}^{s_{1}}\left(\mathbf{k}_{1}\right)+\varepsilon^{2} a_{2}^{s_{1}}\left(\mathbf{k}_{1}\right)+\ldots\right)\left(a_{0}^{s_{2}}\left(\mathbf{k}_{2}\right)+\varepsilon^{2} a_{2}^{s_{2}}\left(\mathbf{k}_{2}\right)+\ldots\right) \\
& \\
& \quad \times\left(a_{0}^{s_{3}}\left(\mathbf{k}_{3}\right)+\varepsilon^{2} a_{2}^{s_{3}}\left(\mathbf{k}_{3}\right)+\ldots\right) \delta_{123}^{0}(\mathbf{k}) e^{i \Omega_{123}^{0} T_{0}} \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

We get the evolution of $a_{0}^{5}(\mathbf{k}), a_{2}^{5}(\mathbf{k}), \ldots$ by identifying the different power of ε.

The multiple time scale method

We introduce a set of time variables: $T_{0}=t, T_{2}=\varepsilon^{2} t, T_{4}=\varepsilon^{4} t, \ldots$ so that:

$$
a^{s}(\mathbf{k})=a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots
$$

With these definitions, we obtain the following expansion:

$$
\begin{aligned}
& \left(\partial_{T_{0}}+\varepsilon^{2} \partial_{T_{2}}+\varepsilon^{4} \partial_{T_{4}}+\ldots\right)\left(a_{0}^{s}(\mathbf{k})+\varepsilon^{2} a_{2}^{s}(\mathbf{k})+\varepsilon^{4} a_{4}^{s}(\mathbf{k})+\ldots\right) \\
& =\varepsilon^{2} \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} \mathbf{L}_{\mathbf{k k}_{1} k_{2} \mathbf{k}_{3}}^{s_{1} s_{3}}\left(a_{0}^{s_{1}}\left(\mathbf{k}_{1}\right)+\varepsilon^{2} a_{2}^{s_{1}}\left(\mathbf{k}_{1}\right)+\ldots\right)\left(a_{0}^{s_{2}}\left(\mathbf{k}_{2}\right)+\varepsilon^{2} a_{2}^{s_{2}}\left(\mathbf{k}_{2}\right)+\ldots\right) \\
& \\
& \quad \times\left(a_{0}^{s_{3}}\left(\mathbf{k}_{3}\right)+\varepsilon^{2} a_{2}^{s_{3}}\left(\mathbf{k}_{3}\right)+\ldots\right) \delta_{123}^{0}(\mathbf{k}) e^{i \Omega_{123}^{0} T_{0}} \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

We get the evolution of $a_{0}^{5}(\mathbf{k}), a_{2}^{5}(\mathbf{k}), \ldots$ by identifying the different power of ε.
Their time integration introduce seculars drifts (terms $\propto T_{0}$ or $\propto T_{0}{ }^{2}$).

The basics of the derivation

The next step is to compute the second order moments:

The basics of the derivation

The next step is to compute the second order moments:

$$
\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle=\underbrace{\left\langle a_{0}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})\right.}_{=n(\mathbf{k})}\rangle+\epsilon^{2}\left\langle a_{2}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})+a_{0}^{5}(\mathbf{k}) a_{2}^{-s}(-\mathbf{k})\right\rangle+\varepsilon^{4}(\ldots)+\ldots
$$

The basics of the derivation

The next step is to compute the second order moments:
$\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle=\underbrace{\left\langle a_{0}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})\right.}_{=n(\mathbf{k})}\rangle+\epsilon^{2}\left\langle a_{2}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})+a_{0}^{s}(\mathbf{k}) a_{2}^{-s}(-\mathbf{k})\right\rangle+\varepsilon^{4}(\ldots)+\ldots$
We impose its boundedness in time at any order: we cancel the secular drifts.

The basics of the derivation

The next step is to compute the second order moments:

$$
\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle=\underbrace{\left\langle a_{0}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})\right.}_{=n(\mathbf{k})}\rangle+\epsilon^{2}\left\langle a_{2}^{5}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})+a_{0}^{5}(\mathbf{k}) a_{2}^{-s}(-\mathbf{k})\right\rangle+\varepsilon^{4}(\ldots)+\ldots
$$

We impose its boundedness in time at any order: we cancel the secular drifts. This gives us:

$$
\partial_{T_{0}} n(\mathbf{k})=0 ;
$$

The basics of the derivation

The next step is to compute the second order moments:

$$
\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle=\underbrace{\left\langle a_{0}^{s}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})\right.}_{=n(\mathbf{k})}\rangle+\epsilon^{2}\left\langle a_{2}^{5}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})+a_{0}^{5}(\mathbf{k}) a_{2}^{-s}(-\mathbf{k})\right\rangle+\varepsilon^{4}(\ldots)+\ldots
$$

We impose its boundedness in time at any order: we cancel the secular drifts. This gives us:

$$
\begin{aligned}
& \partial_{T_{0}} n(\mathbf{k})=0 ; \\
& \partial_{T_{2}} n(\mathbf{k})=0 ;
\end{aligned}
$$

The basics of the derivation

The next step is to compute the second order moments:

$$
\left\langle a^{s}(\mathbf{k}) a^{-s}(-\mathbf{k})\right\rangle=\underbrace{\left\langle a_{0}^{5}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})\right.}_{=n(\mathbf{k})}\rangle+\epsilon^{2}\left\langle a_{2}^{5}(\mathbf{k}) a_{0}^{-s}(-\mathbf{k})+a_{0}^{5}(\mathbf{k}) a_{2}^{-s}(-\mathbf{k})\right\rangle+\varepsilon^{4}(\ldots)+\ldots
$$

We impose its boundedness in time at any order: we cancel the secular drifts. This gives us:

$$
\begin{aligned}
& \partial_{T_{0}} n(\mathbf{k})=0 ; \\
& \partial_{T_{2}} n(\mathbf{k})=0 ;
\end{aligned}
$$

and:

$$
\begin{aligned}
& \partial_{T_{4}} n(\mathbf{k})=36 \pi \int_{\mathbb{R}^{6}} \sum_{s_{1}, s_{2}, s_{3}} s\left|\mathbf{L}_{\mathbf{k k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s s_{3}, s_{3}}\right|^{2}\left(\frac{s}{n(\mathbf{k})}-\frac{s_{1}}{n\left(\mathbf{k}_{1}\right)}-\frac{s_{2}}{n\left(\mathbf{k}_{2}\right)}-\frac{s_{3}}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{123}^{0}(\omega) \delta_{123}^{0}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

$$
\begin{aligned}
\partial_{t} n(\mathbf{k})=36 \pi \epsilon^{4} \int_{\mathbb{R}^{6}}\left|\mathbf{L}_{\mathbf{k}-\mathbf{k}_{1} \mathbf{k}_{\mathbf{2}} \mathbf{k}_{3}}^{s-s s s}\right|^{2} & \left(\frac{1}{n(\mathbf{k})}+\frac{1}{n\left(\mathbf{k}_{1}\right)}-\frac{1}{n\left(\mathbf{k}_{2}\right)}-\frac{1}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{23}^{01}(\omega) \delta_{23}^{01}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

$$
\begin{aligned}
\partial_{t} n(\mathbf{k})=36 \pi \epsilon^{4} \int_{\mathbb{R}^{6}}\left|\mathbf{L}_{\mathbf{k}-\mathbf{k}_{1} \mathbf{k}_{\mathbf{2}} \mathbf{k}_{3}}^{s-s s s}\right|^{2} & \left(\frac{1}{n(\mathbf{k})}+\frac{1}{n\left(\mathbf{k}_{1}\right)}-\frac{1}{n\left(\mathbf{k}_{2}\right)}-\frac{1}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{23}^{01}(\omega) \delta_{23}^{01}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

Assuming isotropic turbulence, exact solutions can be found. They have non-zero constant fluxes so they are turbulent cascades:

The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

$$
\begin{aligned}
\partial_{t} n(\mathbf{k})=\left.36 \pi \epsilon^{4} \int_{\mathbb{R}^{6}}| |_{\substack{\mathbf{k}-\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}}^{s-s{ }^{2}}\right|^{2} & \left(\frac{1}{n(\mathbf{k})}+\frac{1}{n\left(\mathbf{k}_{1}\right)}-\frac{1}{n\left(\mathbf{k}_{2}\right)}-\frac{1}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{23}^{01}(\omega) \delta_{23}^{01}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

Assuming isotropic turbulence, exact solutions can be found. They have non-zero constant fluxes so they are turbulent cascades:

$$
n(k) \propto(-\zeta)^{1 / 3} k^{-2 / 3} \quad \text { and } \quad n(k) \propto \epsilon^{1 / 3} k^{-1}
$$

The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

$$
\begin{aligned}
\partial_{t} n(\mathbf{k})=36 \pi \epsilon^{4} \int_{\mathbb{R}^{6}}\left|\mathbf{L}_{\mathbf{k}-\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s-s s s}\right|^{2} & \left(\frac{1}{n(\mathbf{k})}+\frac{1}{n\left(\mathbf{k}_{1}\right)}-\frac{1}{n\left(\mathbf{k}_{2}\right)}-\frac{1}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{23}^{01}(\omega) \delta_{23}^{01}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

Assuming isotropic turbulence, exact solutions can be found. They have non-zero constant fluxes so they are turbulent cascades:

$$
\underbrace{n(k) \propto(-\zeta)^{1 / 3} k^{-2 / 3}}_{\text {inverse cascade in wave action }} \text { and } n(k) \propto \epsilon^{1 / 3} k^{-1} .
$$

The kinetic equation

Using all the symmetries of the interaction coefficient, we find:

$$
\begin{aligned}
\partial_{t} n(\mathbf{k})=36 \pi \epsilon^{4} \int_{\mathbb{R}^{6}}\left|\mathbf{L}_{\mathbf{k}-\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{s-s s s}\right|^{2} & \left(\frac{1}{n(\mathbf{k})}+\frac{1}{n\left(\mathbf{k}_{1}\right)}-\frac{1}{n\left(\mathbf{k}_{2}\right)}-\frac{1}{n\left(\mathbf{k}_{3}\right)}\right) \\
& \times n(\mathbf{k}) n\left(\mathbf{k}_{1}\right) n\left(\mathbf{k}_{2}\right) n\left(\mathbf{k}_{3}\right) \delta_{23}^{01}(\omega) \delta_{23}^{01}(\mathbf{k}) \prod_{i=1}^{3} \mathrm{~d}^{2} \mathbf{k}_{i} .
\end{aligned}
$$

Assuming isotropic turbulence, exact solutions can be found. They have non-zero constant fluxes so they are turbulent cascades:

$$
\underbrace{n(k) \propto(-\zeta)^{1 / 3} k^{-2 / 3}} \quad \text { and }
$$

inverse cascade in wave action
 direct cascade in energy

Numerical results

First numerical results on GPU (DNS, 1024×1024):

Conclusion

We aim to describe the weakly non linear regime of gravitational waves using statistical and analytical tools [Gay et al., in prep.], in order to predict the existence of a dual cascade numerically observed.

Further works need to be performed:

- How to generalize this method to a more general model? What about the other polarization?
- What about the strong turbulent regime? Is there a link with inflation ?

