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What are massive black holes (MBHs)?

We currently believe that MBHs are hosted at the center of 
galaxies with masses up to  10∼ 10 9 − 1010 M☉

For today talk, let’s focus on the interval

MBH ~ 104-7M☉ 
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From single MBH to binaries

When two galaxies merge, the MBHs in their center form a binary and merge 
emitting gravitational waves (GWs) and electromagnetic (EM)/particles radiation
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Observing the entire Universe with GWs

In mid-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from 
the coalescence of MBHBs in the entire Universe (ArXiv:1702.00786)

➤ 3rd Large class mission selected by European Space Agency (ESA)
➤ Now in Phase B1 - Mission adoption in January 2024
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MBHBs : new cosmological probes

The Λ-Cold Dark Matter (ΛCDM) is the most common cosmological parametrization:

Simple model with good fit to the bulk of data
 Current tensions :

➤ Early Universe: Cosmic Microwave Background (CMB) observations at z > 1000
➤ Late Universe: SNIa, lensed images at z ~ 2.5

We need new models and new probes!

Standard sirens are new cosmological probes

➤ Direct information on dL → No calibration errors and no intrinsic scatter
 ➤ Independent from CMB or SNIa → Independent estimates

Bright sirens, i.e. Redshift information from the EM counterpart
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Cosmology with MBHBs

What constrains can we put on the expansion of the Universe at high redshift
with bright MBHBs?

Key improvements respect to previous works (Tamanini+16)
 ➤ Improve the modeling of the EM counterpart
 ➤ Bayesian analysis for GW signal (Marsat+20) → expensive but realistic
 ➤ Bayesian cosmological inference

Starting point
 ➤ Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Light

Three astrophysical models

Heavy Heavy-no-delays

From PopIII stars

BHs ~ 103 M⊙ BHs ~ 104-6 M⊙

From the collapse of 
hydrogen cloud

Same as Q3d but 
without delay times
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Constructing the population of MBHBs with EM counterpart

In AM+2207.10678 we estimate the rate of MBHBs with a detecatable EM counterpart

Observing strategies

Optical Radio X-Ray
LSST, Rubin Obs. SKALSST, Rubin Obs. Athena
➤ FOV ~ 10 deg2

 ➤ Identification+redshift
➤ FOV ~ 10 deg2

 ➤ Redshift with ELT
➤ FOV ~ 0.4 deg2

 ➤ Redshift with ELT

We also explored the possibility of AGN obscuration and collimated radio emission

Number of EMcp in 4 yr
➤ Strong decrease with
obscuaration and radio jet
➤ Parameter estimation selects
preferentially heavy models

Here we focus on the ‘Standard’ case



8

Overview of cosmological models in our study (AM+23, in prep.)

ΛCDM UniverseCDM Universe
 ➤ ΛCDM parametrization

    2-parameters model: (H0, Ωm)

Dark energy/modified gravity
 ➤ CPL parametrization for ω(z)

    4-parameters model: (H0, Ωm, ω0, ωa
)

 ➤ Phenomenological Tracker model (Bull+20)
    6-parameters model: (H0, Ωm,ω0, ω∞

,z
c
,∆z)

    (work in progress)
➤ Sign-switching Λ (Akarsu+23)
    3-parameters model: (H0, Ωm,z

†
)

    (work in progress)
 ➤ Phenomen. modified gravity (Belgacem+19)

    2-parameters model: (Ξ
0
, n)

At high redshift
 ➤ Redshift bins approach

    Model-independent
    2-parameter models: d

C
(z

p
), H(z

p
)

 ➤ Matter-only approximation
    2-parameter models: d

C
(z

p
), H(z

p
)

 ➤ Splines interpolation
    Model-independent
    Constrain at any redshift <6
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Matter-only approximation

Fit: 

with 10yr of LISA observations
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Matter-only approximation

Fit: 

with 10yr of LISA observations

H(z=2) constrained to few percent 
and H(z=3) ~10 %
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Splines interpolation

Fit: Luminosity distance at 6 fixed knots 
redshifts  at  [0, 0.2, 0.7, 2, 4, 6] 

 with 10yr of LISA observations
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Splines interpolation
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Splines interpolation

Fit: Luminosity distance at 6 fixed knots 
redshifts  at  [0, 0.2, 0.7, 2, 4, 6] 

 with 10yr of LISA observations



15

Conclusion

Cosmology with bright sirens will be challenging

From the current results
 ➤ Potential to constrain H(z) at high redshifts

➤ Information also on the comoving distance
➤ Strong dependence from the EM counterpart

Prospects for the future
 ➤ Need better modeling for the EM 

counterpart
 ➤ Combine MBHBs with other LISA sources 

as SOBHBs and EMRIs

Cosmology with bright sirens will be challenging

(Laghi+in prep.)
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Any questions ?



17

Backup slides
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MBHBs can go up to high redshift

See also ArXiv:2201.07241
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Matter-only approximation and redshift bins

 ➤ Matter-only approximation

We also remove EMcps at z
 
≤ 1-1.5

with z
p
 = 2-3

 ➤ Redshift bins

Trade-off between:
➤ Bin size

 ➤ Number of EMcps in each bin
Requirement: D(z) accuracy ≤ 5%

Not all the redshift bins are informative
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Redshift bins

Fit: 
with 10yr of LISA observations
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 Luminosity distance and redshift estimates

Luminosity distance

 ➤ Accurate estimate of luminosity 
distance → ∆d/dL < 10%

 ➤ Lensing relevant for z > 2-3
 ➤ Peculiar velocities are

negligible

Redshift measurements

LSST/Rubin Obs.

➤Photometric measurements with
∆z = 0.03(1 + z) (Laigle + 19)

ELT
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 Prospects for H
0
 and Ω

m
 

Fit: 

H
0
 can be constrained to few percent

Larger uncertainties on Ω
m

For CPL parametrization → Poor constrains on ω
0
 and no constrain on ω

a

(in 4 yr)
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 What to do with uninformative realisations?

No or few events in a 
redshift bin 

→ The realisation is not 
informative

The posterior 
distribution concides 

with the prior

→

Jensen-Shannon (JS) test

We compare the 
posterior and the prior 

distributions

➤ JS=0 if posterior == prior
➤ JS=1 if posterior != prior

In this case, uniform prior 
for h(z=3) in [0.1,50]
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Mass-redshift distributions and sky localization 

Blue : Light seeds
Red : Heavy seeds

Contour lines: 
(Marsat,..., AM+ in 

prep.)

0.4deg2

10deg2
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