General Analysis Strategy

- T'->tH; t->Wb->qqb; H->WW->l+l-vv
 - Cut-based strategy optimized at T'mass on 700GeV
 - Expected cross section(with NWA): 89fb
- Event Reconstruction
 - top reconstruction: Select 3 jets (including 1 b jet) with X^2 sorting algorithm

$$\chi_W^2 = \frac{(m_W - m_{jj})^2}{\sigma_W^2} \quad \chi_{top}^2 = \frac{(m_t - m_{bjj})^2}{\sigma_t^2}$$

- Higgs reconstruction: Decay products of boosted H decay are collimated
 - Get p_z by assume $\theta_{ll} = \theta_{\nu\nu}$
 - Obtain $m_{\nu\nu}$ from neutrino GEN information
- Apply T' mass constraint

•
$$\tilde{M_T} = M_T - \sqrt{E_H^2 - \vec{p}_H^2} - \sqrt{E_{top}^2 - \vec{p}_{top}^2} + m_H^{pole} + m_{top}^{pole}$$

Events Selection

• Main background processes are $t\bar{t}$ and DY, other background processes (ZZ, WZ, TTV) are also considered

MC Samples

> Take MC sample for analysis strategy study

All Nano AOD samples are lastest reconstructed (UL v9)

T'(700) Signal	TprimeBToTH_M-700_LH_TuneCP5_13TeV-madgraph_pythia8	0.089 pb-1
TTbar	TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8	88.29 pb-1
DY(m(II) > 50GeV)	DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8	6435.0 pb-1
DY(10GeV <m(ii)<5 0GeV)</m(ii)<5 	DYJetsToLL_M-10to50_TuneCP5_13TeV-amcatnloFXFX-pythia8	20460.0 pb- 1
W+jets	WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8	
ттw	ttWJets_TuneCP5_13TeV_madgraphMLM_pythia8	0.204 pb-1
TTZ	ttZJets_TuneCP5_13TeV_madgraphMLM_pythia8	0.252 pb-1
WZ	WZTo3LNu_TuneCP5_13TeV-amcatnloFXFX-pythia8	47.13 pb-1
ZZ	ZZ_TuneCP5_13TeV-pythia8	16.52 pb-1

- Basic cuts& triggers
- Triggers for dimuon channel: HLT_IsoMu24, HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL
- For Muons
 - Two opposite sign muons
 - $p_T > 20 \text{GeV}, |7| < 2.4$
 - Tight Muon ID: Muon_tightId
 - Tight isolation: goodMuons_miniPFRellso_all < 0.05
 - Significance cut: Muon_sip3d < 3
- For jets
 - $p_{T} > 30 \text{GeV}, |\eta| < 2.5$
 - At least 3 tight ID jets, including 1 medium B jet
 - Remove overlapped jets

Cuts	N_Signal	signal eff	N_TT	N_DY50	N_DY10to50	N_TTW	N_TTZ	N_ZZ	N_WZ	S/B	
basic cuts	5.29	100%	129992	67558	2613	136	500	636	1329	0.0026%	
cut0	4.62	87%	25099	755	2613	21	37	17	65	0.016%	
cut1	2.87	54%	789	75	302	3	7	3	28	0.23%	
cut2	2.48	46%	272	65	249	1	5	1	16	0.41%	-
cut3	2.11	39%	186	7	47	1	4	0.7	4	0.84%	

300

60000

50000

40000

30000

20000

10000

200

μ pair mass < 60GeV

400

CMS work in progress

simulation

147 f b⁻¹

DY (II mass above 50) DY (II mass 10to50)

800

T'Mass tilde after basic cuts(GeV)

900

ignal MC T'=700GeV 89fb*10000

• μ pair \mathbf{p}_{T} + top \mathbf{p}_{T} > 350 GeV

500

600

- Minimal δR (μ , b jet from top) > 2
- δR (b jet from top, W from top) < 2.5

- Cut0: Mu pair mass < 60GeV</p>
 - Remove DY, $t\bar{t}$ and non-signal T' decay
- Cut1: Mu pair Pt + top pt > 350 GeV
 - Reject all background: high $p_{\rm T}$ objects from heavy T' decay in signal process

- > Cut2: min δR (μ , b jet from top) > 2
 - Reject $t\bar{t}$: μ & b jet are from the same decay in $t\bar{t}$
- Cut3: δ R (b jet, W) < 2.5</p>
 - Reject DY: b jet and W from different decays in DY

- $\gg M_{T'}$ distribution after all selection: Peaking signal on falling background spectrum
 - Limited statistics of DY NLO sample -> fluctuations

Cuts	N_Signal	signal eff	N_TT	N_DY50	N_DY10to50	N_TTW	N_TTZ	N_ZZ	N_WZ	S/B
basic cuts	5.29	100%	129992	67558	2613	136	500	636	1329	0.0026%
cut0	4.62	87%	25099	755	2613	21	37	17	65	0.016%
cut1	2.87	54%	789	75	302	3	7	3	28	0.23%
cut2	2.48	46%	272	65	249	1	5	1	16	0.41%
cut3	2.11	39%	186	7	47	1	4	0.7	4	0.84%

Cannot remove all Z+jets in my channel

- Cutting on low Chi2 sum value (like 5 GeV) will kill too much background
 - Still cannot remove all Z+jets
 - 60 events for 18 all: might ruin the failing spectrum, bing long error bars and fitting difficulty
- My personal opinion (maybe not right): Chi2 cut is just a mass window cut with higher accuracy. We
 can not say the selected jets are from a real top just because they passed the Chi2 cut

Cannot remove all Z+jets in my channel

- Cross check with SS dilepton channel
 - There is NO hadronic decay top in this channel: We don't see any top peak in m(bjj) distribution
 - But we still see some events with low Chi2 value

DY CR test

- DY CR: Require b jet number = 0, MET_Pt < 100 GeV</p>
- ttbar and signal are highly compressed
- Still need to slove DY MC shortage issue
 - NLO events has more jets

Some ideas about what to do next

- If we would like to import high mass T' (> 850GeV) to our analysis
 - Need to study boosted category
 - Resolved top will become a single top jet
 - Will use non-iso triggers and tags
 - Other analysis and I find Iso trigger will reduce high mass signal efficiency
 - Will keep iso triggers and tags for 700GeV analysis: To keep low pt muons
- Find a solution for DY MC shortage issue
- Find CR and use data driven method for DY, and simulation for ttbar and others
 - Test DY CR
- Add ee channel and emu channel