Conformal Bootstrap and beyond

Balt van Rees

Outline:
1 Conformal field theories
2 The numerical bootstrap
3 An S-matrix bootstrap?

Conformal field theories
(examples: $\left[\phi^{4}\right]_{3}, N=4 S Y M$, some id gauge this)
(d-dim., Euclidean) (operator-algebraic perspective)
(1) Symmetries:

(2) local operators $O_{0}(x)$ obey $\left[\hat{D}, O_{0}(0)\right]=\Delta O_{0}(0)$

- Lorentz index \uparrow \qquad
- Dilatation weight
and are either derivatives: $\theta_{.}(x)=\partial_{\mu} \partial_{v} \ldots \partial_{\rho} \tilde{O}_{\rho}(x)$ or not.
- "descendant" \qquad
- "primary"
(3) correlation functions are constrained by symmetry for primaries:
* 1-pt. functions are trivial: $\langle\mathbb{1}\rangle=1,\left\langle\theta_{0}(x)\right\rangle=0$ tensor structure:
* 2-pt. functions are fixed:

$$
\left\langle O_{0}^{I}(x) O_{0}^{f}(y)\right\rangle=\frac{\delta_{I d} t_{\ldots}}{|x-y|^{2 \Delta_{I}}}
$$

* 3-pt. functions are almost fixed:

$$
\left\langle O_{:}^{I}(x) O_{0}^{J}(y) O_{0}^{k}(z)\right\rangle=\frac{\left.\sum_{\alpha}^{6} \lambda_{I j k}^{(\alpha)}\right\}_{0}^{(\alpha)}}{|x-y|^{\Delta_{I}+\Delta_{j}\left|A_{k}\right| x-\left.z\right|^{0} \Delta_{I}+\Delta_{k}-\Delta_{j}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{I}}} .}
$$

* 4 - and higher -pt. functions have "cross ratios" $\sim \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}$
for descendants: just take derivatives...
$\hat{\geqslant 1} \exists$ convergent operator product expansion

$$
O_{I}(x) O_{J}(y)=\sum_{k} f_{I J K} \frac{O_{k}(y)}{|x-y| \Delta_{I}+\Delta_{j}-\Delta_{k}} \quad\binom{\text { drop } t \text {. from }}{\text { now on }}
$$

- all operators operators

$$
=\sum_{k}^{3} f_{I g k} \underbrace{\left[\begin{array}{c}
\Delta_{I} \Delta_{y} \\
\Delta_{k}
\end{array},(x-y)^{\mu}, \partial_{\mu}\right.}_{k n o w n!}] \quad \theta_{k}(y)
$$

OPE

$$
O_{I}(x) O_{f}(y)=\sum_{k}^{\prime} f_{I g k} \underbrace{C\left[\Delta_{I} \Delta_{k},(x-y)^{\mu}, \partial_{\mu}^{y}\right.}_{k \text { known! }}]^{\cdot} O_{k_{0}}(y)
$$

$\xlongequal[\left\langle\Theta_{I}(x) O_{J}(y) O_{\cdot L}(z)\right\rangle=\frac{\lambda_{\text {I IL }} t_{0}}{|x-y|^{*}|x-z|^{*}|y-z|^{*}}]{\text { in f ns: }}$

$$
\begin{aligned}
& \left\langle\sum_{k}^{9} f_{I g k} C\left[\ldots . \partial_{\mu}\right]^{\bullet} O_{\cdot K}(y) O_{\bullet L}(z)\right\rangle \\
& \quad f_{I g L} C\left[\ldots . \partial_{\mu}\right]^{\cdot} t_{\cdot}|y-z|^{-2 \Delta_{L}} \quad\binom{\text { recall: }}{\left\langle\theta_{K} O_{L}\right\rangle \propto \delta_{K L}}
\end{aligned}
$$

$\Rightarrow f_{I J L}=\lambda_{I J L}$ and a way to fix $C[\ldots]$.
in 4 -pt. fins:

$$
\begin{aligned}
\left\langle O\left(x_{1}\right) \ldots O\left(x_{4}\right)\right\rangle & =\sum^{3} \lambda_{k}^{2} C[\ldots]^{\circ} C[\ldots]^{0} \frac{t_{\ldots}}{\left|x_{2}-x_{4}\right|^{2 \Delta_{k}}} \\
& =\sum^{3} \lambda_{k}^{2} \underbrace{G\left[\Delta_{0}, \Delta_{k}, \ell_{k} ; x_{i}\right]}_{\substack{\text { conformal } \\
\text { block }}}=
\end{aligned}
$$

crossing symmetry:
∞ - ly many consistency conditions for OPE data $\lambda_{I g K},\left\{\Delta_{I}, l_{I}\right\}$.

The numerical bootstrap

$$
\left.\left.\sum_{k}^{\prime \prime} \lambda_{k}^{2}[\rangle \overline{\bar{k}}<-Y_{k}\right]=[Y \mathbb{1}-\rangle \overline{\mathbb{1}}<\right] \forall x_{i} \text { ! }
$$

Let functional $\alpha[\ldots]$ be:

$$
\alpha\left[f\left(x_{i}\right)\right]:=\left.\sum_{m n p q} \alpha_{m n p q} \frac{\partial}{\partial x_{1}^{m}} \cdots \frac{\partial}{\partial x_{q}^{q}} f\left(x_{i}\right)\right|_{x_{i}^{*}}
$$

Suppose:

$$
\begin{aligned}
& \left.\propto[\rangle \bar{k}<-Y M_{k}\right]>0 \quad \forall \text { non -id. operators } \\
& \propto\left[Y_{1}-Y_{1}<\right]<0
\end{aligned}
$$

then: no CFT with operator $O(x)$ exists! (in reality: no such $\propto[\ldots]$ exists)

The numerical bootstrap

$$
\left.\left.\sum_{k}^{\prime \prime} \lambda_{k}^{2}[\rangle \overline{\bar{k}}<-Y_{k}\right]=[Y \mathbb{1}-\rangle \overline{\mathbb{1}}<\right] \forall x_{i} \text { ! }
$$

Let functional $\alpha[\ldots]$ be:

$$
\alpha\left[f\left(x_{i}\right)\right]:=\left.\sum_{m n p q} \alpha_{m n p q} \frac{\partial}{\partial x_{1}^{m}} \cdots \frac{\partial}{\partial x_{q}^{q}} f\left(x_{i}\right)\right|_{x_{i}^{*}}
$$

Suppose:

$$
\begin{array}{ll}
\propto[\rangle=\left\langle-Y / Y_{k}\right]>0 & \forall \begin{array}{l}
\text { operators with } l>0 \\
\text { operators with } l=0 \\
\text { and } \Delta>\Delta_{*}
\end{array} \\
\alpha\left[Y_{1}-Y_{1}<\right]<0 &
\end{array}
$$

then: every CFT with $O(x)$ must also have a scalar operator with $\Delta<\Delta_{x}$!

The numerical bootstrap - $1^{\text {st }}$ result analyze $\langle 0000\rangle$, suppose $0 \times 0=1+\binom{$ scalars $\Delta\rangle \Delta_{\lambda}}{$ tensors any $\Delta}$ (in $d=4$)

[0807.0004 Rattazzi Rychkov Tonni Vichi]

The numerical bootstrap - 3d Ising

- fixed point of $\int d^{3} x\left[-\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2} m^{2} \Phi^{2}-\frac{1}{4!} \lambda \Phi^{4}\right]$
- describes the critical behavior of many systems:
- uniaxial ferromagnets

$$
H=-J \sum_{\langle i j\rangle} \sigma_{i} \sigma_{j}+h \sum_{i} \sigma_{i}
$$

\therefore - critical liquid -vapor points
祭国 • . . .
where we see power laws:

$Q: \alpha, \gamma, \ldots ?$

The numerical bootstrap - 3d Ising
From our perspective:

* reflection positive CFT
$* \mathbb{Z}_{2}$ symmetry $(\Phi \rightarrow-\Phi, \sigma \rightarrow-\sigma)$
* $1 \mathbb{Z}_{2}$ odd scalar operator $\sigma, \Delta_{\sigma} \sim 0.52$
* $1 \mathbb{Z}_{2}$ even " " $\varepsilon, \Delta_{\varepsilon} \sim 1.41$
* all other scalars $\Delta>3$
* all other tensor operators $\Delta>$ (unitarity) (example: stress tensor $T_{\mu \nu}$ has $\Delta_{T}=3$)
physics: $\alpha=2-\frac{3}{3-\Delta_{\varepsilon}}, \quad \gamma=\frac{3-2 \Delta_{\sigma}}{3-\Delta_{\varepsilon}}, \cdots$

The numerical bootstrap - Sd Ising
1203.6064: analyze $\langle 00 \sigma$ o \rangle

1502.02033: analyze $\langle 000 \sigma\rangle$, 〈00 $\langle\varepsilon\rangle$, <દ $\varepsilon \varepsilon \varepsilon>$ and assume no mare relevant scalars
\qquad

The numerical bootstrap - numerics

- computations of conformal blocks (nowadays: various software packages)
- finding $\alpha[\ldots]$ (using polynomial approximations) is a semidefinite programming problem:
find $Y \geqslant 0$ s.t. $\operatorname{tr}[\vec{A} \cdot Y]=\vec{C}$.
(nowadays: dedicated solver "SDPB", under active development, arbitrary precision)
-2104.09518: promote "NO"/ "MAYBE" to smooth continuous function \Rightarrow "navigate" to extremal pts. (e.g. $\max \Delta_{\sigma}$ sit. $\alpha[\ldots]$ exists)

1 The $O(2)$ model
superfluid "te transition
assume: no relevant scalars besides $\phi_{0}, s, t_{i j}$ for $q=1,0,2$, respectively. analyze: all $\phi_{i}, s, t_{i j}$ correlators

$$
1 g 12.03324
$$

Chester, Landry, Lin, Poland, Simmons - Duffing Sou, Vichi
? The O (3) model 2011.14647 assume + analyze: as in $O(2)$ model

3 The $(2,0)$ theories 1507.05637

- bd, maximally supersymmetric CFTs
- low-energy physics of N M5 branes
- no Lagrangian!
assume: \exists stress tensor T, no higher spin currents analyze : $\langle T T T T\rangle$ with "up to Λ derivatives"
 $c=25$ for $2 M 5$ banes!
[spinoff: VOA structure in $]$ $d=6$ and $d=4$ SCAT \Rightarrow analytic results.

$$
1312.5344
$$

The numerical bootstrap
Not discussed:

* GNY models (fermions!)
* Bd QED analyses
* $\left\langle T_{\mu v} \ldots T_{\rho \sigma}\right\rangle$ in $3 d$
* other susy theories * ...

Not done yet:

* Ising with $\sigma, \varepsilon, T_{\mu v}$

Important targets:
conformal windows

* $O(N) \times O(M)$
* Bd (scalar) QED
* 3d YM theories
* Yd YM theories
* Virasoro conformal blocks
* ...

Outline:
1 Conformal field theories
2 The numerical bootstrap
3 An S-matrix bootstrap?

Spinoff: the S-matrix bootstrap Scattering amplitude for 2-2 scalars:

(1) analyticity
$\binom{$ how }{ much? }

(2) unitarily

$$
2 \operatorname{Im}[\hat{T}]=\hat{T}+\hat{T}
$$

$Q:$ what are the possibilities?

Spinoff: the S-matrix bootstrap
Q: what are the possibilities?
$1607.06 \log +t$: numerically explore spaces of (Paulos, Penedones, amplitudes, extremize e.g. Toledo, BUR, Vieiva) $T\left(\frac{4}{3}, \frac{4}{3}\right)$ or scattering lengths
2011.02957 tt : bounds on EFT Wilson coeffs (Caron-Huot, Van Dung) using positivity.
2102.08951 : bounds on gravitational (Caron-Huot, Mazac, couplings, using positivity
Rastell, Simmons-Duffin)

Connecting amplitudes and correlators using AdS/CFT or QFT in AdS

Connecting amplitudes and correlators conformal
$\langle 0,0,0,0$,$\rangle with numeric in 1+1 d$
$\Theta_{1} \times \theta_{1}=11+g_{112} \Theta_{2}+\left(\right.$ stuff with $\left.\Delta>2 \Delta_{1}\right)$
$\Delta(\Delta-d)=m^{2} R^{2} \quad \Delta_{1} \quad 20$

1607.0610 g

Paulos, Penedones, Toledo, BuR, Vieira
analytic S-matrices - $\frac{1 S}{112}$
$s-\mu^{2}$
$0,0<\mu<2 m$ target: $\max \left[g_{112}^{2}\right]$

Connecting amplitudes and correlators analytic results

conformal correlator
analyticity?
unitarity? $\lambda^{2}>0, \Delta>\ldots$ $\operatorname{limit}_{R \rightarrow \infty}$ scattering amplitude
"QFT in AdS instead of LSZ" 2210. 15683 BUR, tho

S-matrix "bootstrap"?
promising directions:

- new universal constraints
- new general analyticity results
- consistency of low-energy data/ lattice data

Apologies

* modular bootstrap
* bootstrap for boundaries and defects
* susy results
* applications to quantum gravity
* .
* .

Spinoff: positivity
general idea: unitarity + linear constraints
\Rightarrow semidef. programming problem
for example: positive measure $\Rightarrow \int d \mu_{x},\left(\begin{array}{c}1 \\ x \in \mathbb{R} \\ x\end{array} x^{2} \ldots\right) \geqslant 0$ and eqns of motion may relate coeffs.

- lattice Is ing
- quantum mechanics
- matrix models

Conclusions \ldots and beyond!
space of
rethinking QFT: solutions?
axioms + positivity \Rightarrow constraints ξ
how to define analytical? CFT/QFT? numerical?
algorithms!

Thank you!

Spinoffs
1 The analytic bootstrap
2 The S-matrix bootstrap
3 Amplitudes from correlators
4 Positivity

Spinoff: the analytic bootstrap
1612.08471: "extremal spectrum" of Sd Ising

pictorially: $\sigma \overleftrightarrow{\partial}_{\mu_{1}} \ldots \overleftrightarrow{\partial}_{\mu_{l}} \overleftrightarrow{\square}^{n} \sigma$ has spin ℓ and dimension approx. $2 \Delta_{\sigma}+l+2 n$

Spinoff: the analytic bootstrap
Claim: in any CFT, if $\exists 0$ with twist τ then \exists ops. with twist approx. 2τ (and $l \rightarrow \infty$) intuition: necessary in lightcone limit :

$\left(x_{2}-x_{3}\right)^{2} \rightarrow 0$
identity op. dominates
 large spin dominates
Alday-Maldacena '00, Komargodski-Zhiboedor ' 14 Fitzpatrick-Kaplan - Poland-Simmons-Duffin ' 14

Spinoff: the analytic bootstrap
"Analyticity in spin in conformal theories"
Caron-Huot 1703.00278
claim: CFT spectrum (to some extent) organizes itself in Regge trajectories:
$\Delta(J)$ analytic.
applications: AdS/CFT, lightray operators, ANEC, (more) large spin pert. thy, ...
highlight: exact functionals

