Collaboration meeting 16/05/23

Toward the next neutrino oscillation analysis on ND280

Now 13.8 billion years

Modern-Galaxies

Reionization

Black Holes and Accretion disks 250 million years

Big Bang

Léna Osu

Universe Age

First Stars < 180 million years Cosmic Dark Ages 380,000 years

Summary

1. T2K Experiment

- 1.1. Beam
- 1.2. Flux prediction and uncertainties
- 1.3. Cross-section Model
- 1.4. ND280 Near Detector Fit

2. GUNDAM Fitter

- 2.1. Some first tests with cuts on $\delta \alpha_{_{t}}$
- 2.2. Looking for instabilities on Hesse Minimizer (FLUX)
- 2.3. Investigation to correct Hesse Flux instabilities

3. New parameterization in GUNDAM

- 3.1. Dials types
- 3.2. Likelihood comparison between GUNDAM & MaCh3
- 3.3. Options for validation

4. ND280 Upgrade and Electronic tests

- 4.1. Upgrade and FEB tests
- 4.2. Conclusion

$$4p^+ \rightarrow {}^4_2$$
 He + $2e^+$ + $2v_e$

 \bigcirc

Nuclear fusion in the Sun

Cosmic particles interaction with terrestrial atmosphere

A major key to understand better early ages of the Universe !!

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - sin^{2}(2\theta_{23})sin^{2}(\Delta m_{32}^{2}L/4E)$

 $\mathbf{P(v_{\mu} \rightarrow v_{e}) \approx sin^{2}(2\theta_{13})sin^{2}(\theta_{23})sin^{2}(\Delta m^{2}_{32}L/4E) \mp O(sin_{CP}^{0})}$

T2K Experiment

$$\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_{\nu})}{\sigma(E_{\nu}, \vec{x}) \otimes \Phi(E_{\nu}) \otimes D^{near}(\vec{x})}$$

30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target producing hadrons (mainly pions and kaons)

Hadrons are focused and selected in charge by 3 electromagnetic horns: v_{μ} beam created by π^+ and ∇_{μ} beam by π^- decay

Detectors 2.5° off the direction of the beam centered around 0.6 GeV. **Off-axis method** reduce high energy tail and maximize oscillation detection probabilities

Cross-section model

Cross-section model - Event selection

- Event selection based on the final state topology \rightarrow limit model dependence
- CC0π mostly composed by CCQE, 2p2h, CCRes and Deep Inelastic Scattering events

CCQE 2p2h		Res	DIS	
80%	12%	8%	< 1%	

ND280 Near Detector fit

prefit

postfit

Flux and xsec uncertainties reduced from 17% to 3% !

ND280 Near Detector fit

22 samples right now (FGD1/FGD2), more to come

Gundam Fitter

• GUNDAM = Generic fitter for Upgraded Near Detector Analysis Methods

take ND280 data and constraint Flux, Cross-section & Detector systematics

 \rightarrow enable to evaluate post-fit errors on Flux, Cross-section and Detector systematics according POT year (until 2027)

 \rightarrow New parameterization of splined detector parameters (BANFF \rightarrow GUNDAM // MaCh3 \rightarrow GUNDAM)

Some first tests with cuts on δa_{t}

Some first tests with cuts on δa_{t}

With High FSI when $\delta \alpha_t \rightarrow \pi$, $\Delta \delta p_t > 0 \& \Delta E_{vis} < 0$ Simple cut on $\delta \alpha_t$ clearly impact $\delta p_t \& E_{vis}$

Looking for instabilities on Hesse Minimizer (FLUX)

	2022	2023	2024	2025	2026	2027
	(OA2022)	(+1.08 FHC)	(+1.18 RHC)	(+1.32 FHC)	(+1.65 RHC)	(+1.75 FHC)
SFGD FHC	-	$1.08 \mathrm{x} 10^{21}$	$1.08 \mathrm{x} 10^{21}$	$2.4 \mathrm{x} 10^{21}$	$2.4 \mathrm{x} 10^{21}$	$4.15 \mathrm{x} 10^{21}$
SFGD RHC	-	-	$1.18 \mathrm{x} 10^{21}$	$1.18 \mathrm{x} 10^{21}$	$2.83 \mathrm{x} 10^{21}$	$2.83 \mathrm{x} 10^{21}$
FGD1/2 FHC	$1.15 \mathrm{x} 10^{21}$	$2.23 \mathrm{x} 10^{21}$	$2.23 \mathrm{x} 10^{21}$	$3.55 \mathrm{x10^{21}}$	$3.55 \mathrm{x10^{21}}$	$5.3 \mathrm{x} 10^{21}$
FGD1/2 RHC	$0.83 x 10^{21}$	$0.83 \mathrm{x} 10^{21}$	$2.01 \mathrm{x} 10^{21}$	$2.01 \mathrm{x} 10^{21}$	$3.66 \mathrm{x} 10^{21}$	$3.66 \mathrm{x} 10^{21}$

.....

.....

6^d 0.9 0.8 d

0.6

0.5 0.4

0.3

0.2 0.1 OLL

Parameter values (normalized to the prior)

Constraints on Flux parameters

Looking for instabilities on Hesse Minimizer (FLUX)

	2022	2023	2024	2025	2026	2027
	(OA2022)	(+1.08 FHC)	(+1.18 RHC)	$(+1.32 \mathrm{FHC})$	$(+1.65 \mathrm{~RHC})$	(+1.75 FHC)
SFGD FHC	-	$1.08 \mathrm{x} 10^{21}$	$1.08 \mathrm{x} 10^{21}$	$2.4 \mathrm{x} 10^{21}$	$2.4 \mathrm{x} 10^{21}$	$4.15 \mathrm{x} 10^{21}$
SFGD RHC	-	-	$1.18 \mathrm{x} 10^{21}$	$1.18 \mathrm{x} 10^{21}$	$2.83 \mathrm{x} 10^{21}$	$2.83 \mathrm{x} 10^{21}$
FGD1/2 FHC	$1.15 \mathrm{x} 10^{21}$	$2.23 \mathrm{x} 10^{21}$	$2.23 \mathrm{x} 10^{21}$	$3.55 \mathrm{x} 10^{21}$	$3.55 \mathrm{x} 10^{21}$	$5.3 \mathrm{x} 10^{21}$
FGD1/2 RHC	$0.83 x 10^{21}$	$0.83 \mathrm{x} 10^{21}$	$2.01 \mathrm{x} 10^{21}$	$2.01 \mathrm{x} 10^{21}$	$3.66 \mathrm{x} 10^{21}$	$3.66 \mathrm{x} 10^{21}$

0.5

CLUMMIN OF

#5 Flux parameters

.....

8

9 10 11

x10²¹ POT

7

#0 #1

..... #4 #5

b^{ta} 0.9

0.8 d b 0.7

0.6

0.5 0.4

0.2 0.

OE

5 6

#2

TANKARANA CONTACTOR AND CONTACTOR

Constraints on Flux parameters

Looking for instabilities on Hesse Minimizer (FLUX)

Hesse vs Migrad for 2025 same fit

Comparing postFit parameters: "Flux Systematics"

absolute error ratio between Hesse & Migrad fits for 2023 and 2025

Instabilities with Hesse increase with POT ! Margherita & Andrés suspect the number of threads used during the fit

 \rightarrow when the event loading is made with multi threads, we must reorder events always with the same way, otherwise weights are randomly accumulated = give differents inputs

Running Gundam means to use several threads

 \rightarrow could be the cause of these instabilities, but not tested yet

Nonetheless, It was added in the latest version of Gundam !

Dials types

- Spline : mathematical smooth curve used to interpolate data with a continuous way $\rightarrow x$ = value of the systematic parameter, y(x) = weight associated to this value
- Using new spline interpolation method on Gundam called "catmull-rom, monotonic" for detector splines (event by event splines)

 \rightarrow Monotonicity means that the curve does not have abrupt changes in direction or inflection points. It maintains a consistent progression in a single direction, either strictly increasing or strictly decreasing.

- MaCh3 is using monotonic, so we should be able to reproduce same LLH scans with Gundam

Likelihood comparison between GUNDAM vs MaCh3

New inputs = splined detector parameters (Highland2 version 2.84 + Psyche version 3.81) made with

 \rightarrow OAGenWeightsApps : <u>ND280GenWeights</u> \rightarrow to generate xsec splines (config ND280_OA2021_Config_NoMirroring.toml for each file with xsec splines : Use <u>makeND280SystSplines</u> \rightarrow to generate detector splines (config ND_Syst_Merge_Def.toml)

Checking with Ewan Miller (MaCh3 another fitter) if our files with new inputs are similar looking LLH scans and Splines shapes

Some examples (fits with all run files 1-10): $-2\log \mathcal{L}_{\text{stat}} = 2\sum_{i}^{\text{bins}} \left[\left(N_i^{\text{MC}}(\vec{\lambda}) - N_i^{\text{data}} + N_i^{\text{data}} \log \frac{N_i^{\text{data}}}{N_i^{\text{MC}}(\vec{\lambda})} \right) + \frac{(\beta_i - 1)^2}{2\sigma_{\beta_i}^2} \right].$

$$-2\ln(L^{\text{syst}}) = \sum_{p} \left(\vec{p} - \vec{p}_{\text{prior}}\right) \left(V_{\text{cov}}^{\text{syst}}\right)^{-1} \left(\vec{p} - \vec{p}_{\text{prior}}\right)$$

Most of Cross-section parameters are perfectly matching with Mach3!

Likelihood comparison between GUNDAM vs MaCh3

Unfortunately, some new detector splined & cross-section parameters are not matching with MaCh3

 \rightarrow Cross-section FSI & SIPion splined detector parameters

- Check the event rates according the input weight (POT weight only, Cross-section nominal weight, Flux nominal weight..)
- Compare different spline type shapes
- New spline implementations in GUNDAM

 → Does the interpolation spline method is similar in
 GUNDAM and MaCh3 ?

 Ewan says our monotonic splines seem to be equivalent
- something must be different in our inputs, but what ???

All weights Event rate

Sample	BANFF	GUNDAM	MACH3	(B-G)/B
FHC FGD1 ν_{μ} CC0 $\pi 0p0\gamma$	18312.5	18533.2	18372.5	0.0119119
FHC FGD1 ν_{μ} CC0 $\pi N p 0 \gamma$	9027.02	9911.04	9036.49	0.0891960
FHC FGD1 ν_{μ} CC1 $\pi 0\gamma$	6491.09	6767.39	6430.31	0.0408278
FHC FGD1 ν_{μ} CCOther0 γ	1621.02	1649.7	1617.12	0.0173860
FHC FGD1 ν_{μ} CC γ	10521.1	11570.9	10508.5	0.0907278
FHC FGD2 ν_{μ} CC0 $\pi 0p0\gamma$	19406.4	20315.8	19519.4	0.0447593
FHC FGD2 ν_{μ} CC0 $\pi N p 0 \gamma$	7403.13	7474.48	7395.87	0.0095462
FHC FGD2 ν_{μ} CC1 $\pi 0\gamma$	5311.48	5503.45	5301.13	0.0348821
FHC FGD2 ν_{μ} CCOther0 γ	1560.34	1570.84	1559.59	0.0066869
FHC FGD2 ν_{μ} CC γ	9537.12	9837.29	9526.96	0.0305134
RHC FGD1 $\bar{\nu}_{\mu}$ CC0 π	8172.58	8354.51	8228.21	0.0217762
RHC FGD1 $\bar{\nu}_{\mu}$ CC1 π	699.839	750.284	697.996	0.0672347
RHC FGD1 $\bar{\nu}_{\mu}$ CCOther	1370.95	1433.54	1345.91	0.0436585
RHC FGD2 $\bar{\nu}_{\mu}$ CC0 π	7815.33	7946.82	7869.53	0.0165463
RHC FGD2 $\bar{\nu}_{\mu}$ CC1 π	654.468	657.978	652.623	0.0053340
RHC FGD2 $\bar{\nu}_{\mu}$ CCOther	1230.61	1272.97	1228.68	0.0332805
RHC FGD1 ν_{μ} (bkg) CC0 π	3444.8	3435.42	3420.33	-0.002730
RHC FGD1 ν_{μ} (bkg) CC1 π	1212.63	1717.24	1204.96	0.2938490
RHC FGD1 ν_{μ} (bkg) CCOther	1164.15	1174.66	1161.01	0.0089470
RHC FGD2 ν_{μ} (bkg) CC0 π	3361.06	3419.5	3356	0.0170905
RHC FGD2 ν_{μ} (bkg) CC1 π	974.841	1021.36	975.62	0.0455450
RHC FGD2 ν_{μ} (bkg) CCOther	1101.66	1144.96	1099.05	0.0378199

T2K ND280 near detector & SFGD upgrade

Momentum threshold reduced

Expect total uncertainty systematics < 4%

Study neutrino oscillation cross-section 3 TPCs and 2 FGDs (used for OA2022) →limited momentum threshold (450 Mev/c)

 \rightarrow limited angular acceptance (for HA and BW muons)

Polystirene-based Plastic scintillator 1x1x1 cm³ cubes (~ 2x10⁶ in SFGD)

Electronic tests at Geneva University

- Main goal of Gundam fitter is to be as or even more efficient than MaCh3 or BANFF \rightarrow lot of verifications on going to lead to the validation between Gundam & MaCh3
- Validation for OA 2022 and then OA 2024 with new 4π selection
- More electronic tests to come on FEB with cold-crate mid June
- Upgrade of ND280 in Japan in July