

HKROC Tests & Results

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly - May 2nd, 2023

Introduction The HKROC ASIC

HKROC On-Board integrated system

Block Diagram

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

May 2^{*nd*}, 2023

HKROC Test bench

HKROC digitizer architecture

Block diagram

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

May 2^{*nd*}, 2023

HKROC Test bench

HKROC on Mezzanine daughter board

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HG - MG - LG **Pin 0** \leftrightarrow **Ch. 0-1-2** $\blacksquare Pin 1 \leftrightarrow Ch. 3-4-5$ $\blacksquare Pin 2 \leftrightarrow Ch. 6-7-8$ $\blacksquare Pin 3 \leftrightarrow Ch. 9-10-11$ $\blacksquare Pin 4 \leftrightarrow Ch. 12-13-14$ $\blacksquare Pin 5 \leftrightarrow Ch. 15-16-17$ $\blacksquare Pin 6 \leftrightarrow Ch. 18-19-20$ $\blacksquare Pin 7 \leftrightarrow Ch. 21-22-23$ $\blacksquare Pin 8 \leftrightarrow Ch. 24-25-26$ $\blacksquare Pin 9 \leftrightarrow Ch. 27-28-29$ $\blacksquare \operatorname{Pin} 10 \leftrightarrow \operatorname{Ch.} 30\text{-}31\text{-}32$ 600 ADC ⊨ Pin 11 ↔ Ch. 33-34-35

400

200

IN₂P₃

May 2^{*nd*}, 2023

100

200

300

Time [ns]

400

	1-
—— Channel 33	
— Channel 34	
—— Channel 35	
600	

Where we initially stood.

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

~ 800 p.e. input signal in one injection pin (HG, MG and LG channels)

MEGA

CrOe

HKROC Tests & Results

Claim

IN2P3

May 2nd, 2023

Where we initially stood.

Identified Cross-talk

- 1. Diffuse cross-talk (negative), ASIC-wise.
 - ✓ Decoupling capacitances added: HKROC v0 → HKROC v1b.

2. Close cross-talk (positive), board-wise. \checkmark Mezzanine single-layer daughter board \rightarrow BGA multi-layer mother board.

HKROC Tests & Results

May 2^{*nd*}, 2023

From Mezzanine to BGA

From single-layer to multi-layer

Mezzanine daughter board on Mother board

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

BGA mother board

POLYTECHNIQUE POLYTECHNIQUE DE PARIS

Principle

Example (injection in channels 15-16-17)

(Negative) Diffuse Crosstalk Matrices – Board v2 (BGA)

HKROC v0

A. Beauchêne, D. Carabadjac, S. Conforti,

F. Dulucq, J. Nanni & R. Rogly

Creating **IN2P3**

Courtesy of Antoine

HKROC Tests & Results

May 2^{*nd*}, 2023

POLYTECHNIQUE

(Negative) Diffuse Crosstalk Histograms – Board v2 (BGA)

HKROC v0

- A. Beauchêne, D. Carabadjac, S. Conforti,
- F. Dulucq, J. Nanni & R. Rogly

CIERCE MEGA IN2P3

HKROC v1b

HKROC Tests & Results

May 2^{*nd*}, 2023

0.0	

(Positive) Diffuse Crosstalk Matrices – Board v2 (BGA)

HKROC v0

A. Beauchêne, D. Carabadjac, S. Conforti,

F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

CIERCE **IN2P3**

May 2^{*nd*}, 2023

(Positive) Diffuse Crosstalk Histograms – Board v2 (BGA)

HKROC v0

A. Beauchêne, D. Carabadjac, S. Conforti,

F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

May 2nd, 2023

Close Crosstalk Reduction

Close Crosstalk Matrices - HKROC v1b

Board v1 (Mezzanine) [ADC units]

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

Board v2 (BGA) [ADC units]

May 2^{*nd*}, 2023

Injection channel

HKROC Tests & Results

May 2^{*nd*}, 2023

Close Crosstalk Matrix

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

MEGA

Expected in-layer cross-talk

Crants

IN2P3

May 2^{*nd*}, 2023

Close Crosstalk Matrix

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

MEGA

Expected in-layer cross-talk

Crants

IN2P3

May 2^{*nd*}, 2023

Close Crosstalk Matrix

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

MEGA

Abnormal cross-layer cross-talk

Crants

IN2P3

May 2^{*nd*}, 2023

Close Crosstalk Matrix

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

MEGA

High in-layer cross-talk

Crants

IN2P3

HKROC Tests & Results

May 2^{*nd*}, 2023

Close Crosstalk Matrix

MFGA

HKROC Tests & Results

Crants

IN2P3

May 2^{*nd*}, 2023

Linearity measurements

Crants

IN2P3

HKROC Tests & Results

May 2^{*nd*}, 2023

MFGA

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

Linearity measurements

Cratition

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

MFGA

Conclusions on Crosstalk

- Validated the reduction (factor ~3) of diffuse crosstalk: HKROC $v0 \rightarrow$ HKROC v1b.
- Validated the reduction of close crosstalk: Mezzanine board \rightarrow BGA board.
 - → Survival 1-2% HG \rightarrow MG close crosstalk.
 - Unexpected cross-layer close crosstalk + threshold ?

HKROC Tests & Results

May 2^{*nd*}, 2023

What we looked at so far...

Before: Crosstalk measurements

Now: Time measurements

➡ Measure the Time of Arrival (ToA) of the signal.

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC digitization

S-curves for Time of Arrival (ToA)

ToA_threshold = toa_vref<9:0> - trim_dac_toa<5:0>

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

Courtesy of Denis

No trigger \leftrightarrow Efficiency = 0%

S-curves for Time Of Arrival (ToA)

ToA_threshold = toa_vref<9:0> - trim_dac_toa<5:0>

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

Only triggers \leftrightarrow **Efficiency = 100%**

May 2^{*nd*}, 2023

S-curves for Time Of Arrival (ToA)

ToA_threshold = toa_vref<9:0> - trim_dac_toa<5:0>

Signal peak height \leftrightarrow Efficiency = 50%

Here toa_vref = $162 \leftrightarrow$ threshold = 0.632 p.e.

Noise level

Courtesy of Denis

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

Fit by error function on the 36 channels to extract the noise level: < 1/22 p.e. for all channels! (Target threshold = 1/6 p.e.)

HKROC Tests & Results

May 2^{*nd*}, 2023

ToA mean (PMT waveform)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly CINS IN2P3 Les deux infinis Acroelectronics Laboratoire Dicroelectronics

POLYTECHNIQUE POLYTECHNIQUE DE PARIS

ToA std (PMT waveform)

Around 1/6 p.e. threshold:

- **Even pin/channel**: explosion of the std for **1 p.e.** injected charge (PMT waveform)
- **Odd pin/channel**: explosion of the std for **10 p.e**. injected charge (PMT waveform)
- A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

CIERCIA IN2P3

Correspond to a « kink » in ToA mean, i.e. deformation of the pre-amp. signal feeding the TDC.

HKROC Tests & Results

May 2^{*nd*}, 2023

ToA std (PMT waveform)

Without this coupling \rightarrow well within the requirements to have ToA resolution < 300 ps for 1 p.e.

1.00

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

IN2P3

500г

450

400

<u>တ</u>350

pts 250

< 200

L 150

100-

50

500

450

1.5

1.0

threshold [p.e.]

8.0

0.5

Classification

threshold [p.e.]

pin 10 - HG ch. 28

1.0

threshold [p.e.]

pin 13 - HG ch. 31

1.5

charge: 10.0 p.e.

charge: 1.0 p.e.

0.5

charge: 10.0 p.e

50

0

May 2^{*nd*}, 2023

POLYTECHNIQUE DE PARIS

charge: 10.0 p.e charge: 1.0 p.e.

Conclusions on ToA

- Continue investigation on the coupling.
- Noise level confirmed to be moderate.
 - Check impact on noise trigger rate at 1/6 p.e. Required to be < 1 Hz.</p>

• If not for the clock coupling, ToA resolution well within HK requirements (< 300 ps at 1 p.e.)

HKROC Tests & Results

May 2^{*nd*}, 2023

Injection

Injection Matrix - Chip v1b + Board v2 (BGA)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

Input signal ~ 200 p.e.

HKROC Tests & Results

May 2^{*nd*}, 2023

Linearity Measurements

Creation

IN2P3

A. Beauchêne, D. Carabadjac, S. Conforti,

F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

May 2^{*nd*}, 2023

ToA histograms (PMT waveform)

IN2P3

20

toa [ns]

21

20

18

19

May 2^{*nd*}, 2023

22

23

24

HKROC Tests & Results

Clantification

ToA mean (Triangular waveform)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

CIERCE **IN2P3**

HKROC Tests & Results

May 2^{*nd*}, 2023

ToA std (Triangular waveform)

Around 1/2 p.e. threshold: **Even pin/channel**: explosion of the std for **1 p.e.** injected charge (PMT waveform)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly Charles deux infinis According to the second second

pin 09 - HG ch. 27

— thr.: 0.167 p.e.

charge: 10.0 p.e.

charge: 1.0 p.e.

500₁

450

400

က်350 ၂၂၂၂ ၂၂၂၂၂

pg 250

Correspond to a « kink » in ToA mean, i.e. deformation of the pre-amp. signal feeding the TDC.

HKROC Tests & Results

May 2^{*nd*}, 2023

POLYTECHNIQUE POLYTECHNIQUE DE PARIS

ToA histograms (Triangular waveform)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

toa [ns]

Phase scan for 1 p.e. signal

1 p.e. Triangle signal / Injection pin n°6 (HG ch. 18)

A. Beauchêne, D. Carabadjac, S. Conforti, F. Dulucq, J. Nanni & R. Rogly

HKROC Tests & Results

CIERCE

IN2P3

May 2^{*nd*}, 2023

