

OUTLINE

- The transient high-energy (and radio) sky
- Stellar deaths, GRBs and TDEs
- NS-NS mergers and GWE
- > XRB, a recent illustrative example with MeerKAT
- New observatories to come

RADIO TRANSIENTS

- Exploring the extreme events in the Universe: brightest, fastest, hottest, densest, most massive, most magnetized, + the Unknown !
- Probing the Universe on cosmological distances.
- > The various transients can be divided in two categories:
 - Coherent (T_b > 10¹² K), observed in beamformed data; short duration : fast transients (pulsars, FRB, RRATS,...).
 - Incoherent synchrotron from explosive events (T_b < 10¹² K), images, slow transients.

VARIABLE HIGH ENERGY TRANSIENTS

Gamma-ray burst (GRB)

Fast blue optical transient

Stellar deaths

Black holes grows: accretion and mergers

Tidal disruption event (TDE)

NS merger = GRB = GWE

X-ray binaries = XRB

Fast

transients

Pulsars

Magnetars

Fast Radio Burst (FRB)

RADIO X-RAY SYNERGIES

- Accretion processes (X-ray emission) ubiquitously associated with relativistic outflows (radio emission)
- The X-rays probe the rate and conditions in the accreting matter, the radio traces the kinetic feedback to the local environment

A WIDE VARIETY OF EXPLOSIONS

10⁴ В $v^{-p/2}$ (רזל) און 10² D $\{\frac{t^{-1/2}}{[t^{-2/7}]}\}$ $t^{-1/2}$ $t^{-3/2}$ [$t^{-12/7}$ -4/5 10⁰ 'n a C 10¹⁰ 10¹² 10¹⁴ 10¹⁶ 10¹⁸ 10⁸ b slow cooling t>t₀ v^{1/3} $v^{-(p-1)/2}$ 10⁴ F G ([rī] xnl E v^{-p/2} t^{-3/2} t-1/2 10⁰ 10^{-2} ν_m vc a 10¹² 10¹⁶ 10¹⁰ 10¹⁴ 10¹⁸ 10⁸ v (Hz)

v1/3

fast cooling t<t₀

 $v^{-1/2}$

а

Coppejans et al. 2020

GRBs: ULTRARELATIVISTIC OUTFLOWS

- Forward shock probes
 - Circumburst density
 - Total burst energy
 - Jet collimation
- Reverse shock probes:
 - Jet Lorentz factor
 - Jet composition
 - Jet magnetization

- Distant GRBs probe the first BHs
 - z= 9.4 (possibly 11)

JETTED TDES: HOW DO SMBHs LAUNCH JETS ?

- > Jetted TDEs are rare few percent
 - Visible out to z>1
 - > Probe density profiles at pc scales
 - Accretion history
 - > Spatial association with a HE neutrino (Stein et al 2021)?

NEUTRON STAR MERGER EVENTS

- Superluminal motion in GW170817
 - Astrometric shift over 165 days (Mooley et al. 2018)

OFF AXIS STRUCTURED JETS

LONGER TIMESCALE MONITORING

- Remains consistent with structured jet viewed offaxis
- No evidence as yet for kilonova afterglow
 - Rules out shallow stratification indices a<6:

 $\mathsf{E}(\Gamma\beta)\propto(\Gamma\beta)^{\text{-}\alpha}$

Depends on NS EOS

Hajela et al. (2019)

COSMOLOGY AND STANDARD SIRENS

- ▶ d_L from GW waveform
- z from EM data
- H₀ constraint limited by degeneracy in GW data
- Break using VLBI and light curve modeling
- ▶ 7% constraint on H₀
- > 2% with 50-100 BNS

XRB: AN ILLUSTRATIVE EXAMPLE —> MAXI J1848-015

X-ray binary, discovered in outburst in December 2020 by MAXI (Takagi et al. 20) (while the source was Sun-constrained for almost all other telescopes).

- NuSTAR observations (Pike et al. 2022) : State transition (soft, hard), relativistic reflection features, high spin (a = 0.967 +/- 0.013) -> A black hole candidate ?
- Early February 2021: Swift+Chandra follow-up -> located in the core of the cluster GLIMPSE-C01 but not coincident with any of the X-ray sources (e.g. Chakrabarty et al. 21).
- Short duration outburst. Radio counterpart (Tremou et al. 21) -> likely radio jets

MODELLING THE JET PROPER MOTION

First relativistic jets detected from an XRB in a GC (Bahramian et al. 2023)

CHANDRA/VLA CAMPAIGN

NEW RADIO OBSERVATORIES

- Now available: NenuFAR, LOFAR, ATCA, MeerKAT, VLA, Noema, ALMA, ... in term of increasing frequencies
- SKA in the near future (see talk by Chiara)
- But to not forget ngVLA (= SKA-High ?):
 - > 10 x the sensitivity/resolution of the JVLA/ALMA
 - ▶ 1.2 116 GHz Frequency Coverage
 - > 244 x 18m + 19 x 6m (for short baseline array)
 - Thermal imaging on milliarcsecond scales
 - Astro2020 identified the ngVLA as a high-priority large, ground- based facility whose construction should start this decade (> 2026). Open sky policy.
- Future = Two hemisphere radio systems !
- + lots of synergies to explore for HE sources (Chandra, SVOM, CTA, ...)

