

The prompt evolution of a SGRB jet through magnetized media

Diego López-Cámara (IA-UNAM)

+ Leonardo Garcia-Garcia (IA-UNAM), Davide Lazzati (OSU)

(García-Garcia et al. 2023)

SGRBs... (jets vs ρ $\uparrow\uparrow$)

 $L_{iso} \sim 10^{49} - 10^{52} \,\mathrm{erg}\,\mathrm{s}^{-1}$

(Ghirlanda et al. 2009, Berger 2013)

 $\mathbf{V} \sim \mathbf{C} \quad (\Gamma \gg 1)$ (Piran 1999, Ghirlanda et al. 2018)

 $\theta_i \cong 5^\circ - 25^\circ$ (Berger 2013, Fong et al. 2015)

 $T_{90} < 2 s$

(Kouveliotou et. al. 1993)

Progenitor: BNS merger

(Abbot et al. 2017; Lazzati et al. 2018, Mooley et al. 2018)

GRB170817A...

Thanks Rosa and Ny Avo

BNS merger

SGRB (off-axis)

(Ciolfi, et al. 2017)

Objective of this study...

2D relativistic jet vs $\rho \uparrow \uparrow + B \uparrow \uparrow$ media

... PLUTO RMHD code (Migone et al 2007)

(spherical coordinates)

BNS merger

+

SGRB (RHD jet)

Setup... (ρ and B medium)

$$\rho_m \sim 10^{8-14} \ g \ cm^{-3}$$

3D GRMHD NS-NS merger study

q=1 EoS = APR4 (Ciolfi et al. 2017)

0 80 km

<mark>3,000 km</mark> 5 / 11

 $\beta_m = P_g/P_B$

Setup... (jet vs ρ and B big medium)

12,000 km

$$\begin{array}{l}
 L_{j} = 10^{50} \text{ erg s}^{-1} \\
 \theta_{j} = 10^{\circ} \\
 \Gamma_{j,0} = 5 \\
 d_{co} = 200 \text{ km}
 \end{array}$$

Name	β_m	Resolution	
Control	∞	LR, MR, SR, HR	
P0.1	0.1	SR	
P0.5	0.5	SR	
P1.0	1.0	SR	
P5.0	5.0	SR	
P20	10	SR	
P25	25	SR	
P50	50	SR	
P75	75	SR	
P100	100	SR	
P500	500	SR	
P1e4	10 ⁴	SR	

LR:	N _r = 6000	,	$N_{\theta} = 600$
MR:	N _r = 8000	,	N_{θ} = 800
SR:	N _r = 10000	,	N_{θ} = 1000
HR:	N _r = 12000	,	N_{θ} = 1200

Jet in B medium...

$$\beta_m = P_g/P_B = 0.1$$

B vs no B...

 $\beta_m = P_g/P_B = 0.1$

No clear difference... but with more models (and analysis)...

Different B... (effects in jet and cocoon)

8 / 11

Different B... (effects in shocks)

 $B_m \propto RSs$?...

9 / 11

9 / 11

Conclusions...

2D relativistic jet vs ρ $\uparrow\uparrow$ + B $\uparrow\uparrow$ media

↑ $B_m \Rightarrow \overline{B_c}$ ↑ (cocoon magnetization)

↑ $B_m \Rightarrow \downarrow RSs$ (suppression of RSs) \Rightarrow low-L prompt + bright afterglow

 v_{Ih} and the induced \overline{B}_i are ~ independent from B_m

Future numerical studies with a larger domain are necessary to obtain LCs and spectra in order to better understand the role of B_m