# Exploring high-redshift GRBs with CAGIRE

Alix Nouvel de la Flèche Supervised by J.L.ATTEIA & O. GRAVRAND





IRP – 2023

### Difficulties to study high-redshift GRBs

- The redshifts of 609 GRBs were measured over the 2424 GRBs detected since 1997
- Scarcity of high-redshift GRBs: only 13 GRBs (2,1%) detected with z>6, since 1997



•

# SCIENTIFIC OBJECTIVES

 $\rightarrow$  Explore distant galaxies

 $\rightarrow$  Constrain the GRB formation rate

 $\rightarrow$  Study Pop III stars ?

IRP – 2023

### Detection of the faint hosts galaxies of very distant GRB

GRBs are great tools and allow to:

- Lighten the surrounding environment and reveal and probe their host galaxy (including faint hosts)
- Measure redshift
- Convey information about the gas/dust properties of their host galaxies through a detailed spectroscopy of the afterglow (chemical content, dynamics, hydrogen column density, sate of the IGN...)

### As example the detection of GRB 210905A and its host galaxy at z~6.3 by SWIFT :

Low metallicity, moderate dust depletion, observation of low-ionization gas clouds far from the GRB, detection of 4 objects close to the host galaxy.

 JWST spectroscopy could help to complete the absorption measurement done by GRBs afterglow's observations (metallicity, dynamics) with emission observation (luminosity, SFR).



### Constrain the SFR above z~5-6

- Majority of star formation takes place in faint galaxies: difficulties to detect them.
- Long GRBs are associated with star forming regions.
- But Star Formation Rate (SFR) ≠ GRB formation rate (GRB rate seems to decrease more slowly than SFR.)
- Strong rise in the efficiency of producing GRBs with redshift ?
- Uncertainties (and contradictions?) => importance to study the SFR at high z.
- SFR is important to understand the contribution of massive stars to the reionisation of the universe.



Source: Kistler et al. 2018, Bromm and Loeb 2006, Daigne et al. 2018, Tanvir et al. 2021.

### Detection of GRB associated with the explosion of population III stars.

- GRB from Pop III stars could help to
- Learn more about the history of star formation and about the transition between :
- The early universe: simple, homogeneous, populated with massive stars (pop III) (1)
- The actual universe: more complex, populated with solar size stars (pop I & II)
- Learn more about the cosmic re-ionisation of the Inter Galactic Medium (IGM)



IRP – 2023

Sources:

### Detection of GRBs associated with the explosion of population III stars.

- Pop III stars could explain the reionisation and IGM promptly enrichment with heavy elements. They should be :
- (I) Be (very) massive
- (2) Have a high surface temperature: efficient sources of ionizing photons
- (3) Present a short stellar evolution (10<sup>6</sup> years)
- Pop III stars with a close binary companion could be GRB progenitors. Pop III originated GRB should present:
- (1) An afterglow free from metallic element: difficult to observe without very high signal to noise ratio
- (2) Long and highly energetic because of the mass of the stars

Until today only Pop I/II stars have been observed even at redshift z>7, in massive galaxies, because of the rapid IGM enrichment with the first supernovae.

7

Requirements to use GRBs as probes of the distant universe.





# CAGIRE

CAPTURING GAMMA RAY BURST INFRA-RED EMMISSION

Study the IR counterpart of the afterglows of SVOM GRBs.

CAGIRE aims to:

- Study high redshift candidates
- Localize more precisely the bursts
- Combined with DDRAGO: measure the photometric redshift

### CAGIRE

| Field of view                            | 21.7 '                                |
|------------------------------------------|---------------------------------------|
| Sky pixel size                           | 0,65"                                 |
| Wavelength range<br>Photometric channels | I.I – I.8 μm<br>J & H                 |
| Sky background<br>expected               | 160 e-/s/pix (J)<br>1250 e-/s/pix (H) |
| Attainable redshift                      | Up to z~II                            |
| Vacuum autonomy                          | > 6 months                            |
| Detector                                 | ALFA                                  |
| Number of pixels                         | 2048 × 2048                           |



### THE ALFA SENSOR

ALFA : Astronomical Large Format Array developed by CEA-LETI and Lynred. 

•

•

Characteristics:

Pixel size: 15µm

Cutoff: 2.1 µm

Material: HgCdTe (MCT)



#### **ALFA Sensor**

Source : Fabrication and characterization of a high performance NIE  $2k \times 2k$  MCT array at CEA and Lynred for astronomy applications, O.Gravrand et al.



#### ALFA Sensor diagram

Source : Fabrication and characterization of a high performance NIE  $2k \times 2k$  MCT array at CEA and Lynred for astronomy applications, O.Gravrand et al.

Characterization by CEA-IRFU allowed to simulate the camera 

IRP – 2023

## CAGIRE SIMULATION

• Efficiency of CAGIRE pre-processing pipeline to provide relevant signal maps for astrophysics studies





- I. Pre-processing to compute the signal while correcting non linearities, saturated pixels, cosmic rays.
- 2. Flatfield correction of the signal map and correction of cold pixels
- 3. Extraction of sources (Source-Extractor) & cross-match with 2MASS.

### CONCLUSION

- Hight redshift GRBs are difficult to localize and to observe
- Their detection could help to:
- $\rightarrow$  Explore distant galaxies
- $\rightarrow$  Constrain the GRB formation rate
- $\rightarrow$  Study Pop III stars ?
- CAGIRE at the focus of the robotic telescope COLIBRI : to study distant GRB thanks to its sensibility in the infra-red, targeting GRBs with a redshift z<11</li>
- Efficiency of CAGIRE pre-processing pipeline to provide relevant signal maps for astrophysics studies



### CHARACTERIZATION STRATEGY

• The detector is now at CPPM !



### PERSISTENCE CORRECTION

• Accumulated persistent signal : 
$$P(t) = A_1 \left[ 1 - exp \left( -\frac{t}{\tau_1} \right) \right] + A_2 \left[ 1 - exp \left( -\frac{t}{\tau_2} \right) \right]$$

• Correction with 2 maps : A1 and A2 (with  $\tau_1$  and  $\tau_2$  fixed beforehand)

