





#### Yelyzaveta Yedelkina

Dr.J.P. Lansberg (IJCLab), Dr.M.Nefedov(IJCLab)

Sep. 27, 2023

Assemblée Générale 2023 du GDR QCD

Y. Yedelkina (IJCLab,UCD)

Inclusive  $J/\psi$  and Y production in  $\gamma\gamma$  fusion

イロト イポト イヨト イヨト

## Part I

## Introduction

Y. Yedelkina (IJCLab,UCD)

Inclusive  $J/\psi$  and Y production in  $\gamma\gamma$  fusion

イロト イポト イヨト イヨト

#### Introduction: inclusive $J/\psi$ and Y production in photon fusion In this work we discuss direct-photon and single-resolved photon $J/\psi(Y)$ production in $\gamma\gamma$ fusion:

as a reminder, J/ψ(Y) is a cc̄ (bb̄) bound state with J = 1, L = 0, S = 1; vector particle



#### One supposes factorisation:

- collinear, in which the hadronic cross section can be written as the convolution of the photon flux (WWA) and PDFs (for resolved-photon) with the partonic cross section;
- between the hard part (a perturbative amplitude, which describes the QQ pair production) and the soft part (a non-perturbative matrix element, which describes hadronisation - LDME):
- Colour Singlet (CS): the Taylor series expansion of the ampl. in the QQ relative momentum (v) to the 1st non-vanishing term. Colour Octet (CO): higher-v<sup>2</sup> ord.

#### General structure of NLO corrections

M. Krämer, Nucl.Phys., B459, 3 (96')



Singularities at NLO [and how they are removed]:

- Real emission
  - Infrared divergences: Soft [cancelled by loop IR contr.]
  - Infrared divergences: Collinear
    - initial state [subtracted by Altarelli-Parisi counter-terms (AP-CT) in the factorised PDFs]
    - final state [cancelled by loop IR contr.]
- Virtual (loop) contribution
  - Ultraviolet divergences: [removed by renormalisation]
  - Infrared divergences: [cancelled by real Infrared contribution]

[The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]

## LEP2 Puzzle: the DELPHI data overshoot CS+CO



- M. Klasen, B.A. Kniehl, L.N. Mihaila, M. Steinhauser (Phys.Rev.Lett.89:032001,2002): at low p<sub>T</sub> LO CS+CO prediction reproduces the **DELPHI** data (J. Abdallah et al., PLB 565, 76 (2003))
- M. Butenschoen, B.A.Kniehl: (PRD84, 051501(R),2011): At NLO in α<sub>s</sub>-order CS+CO these data do not agree anymore with NRQCD
- DELPHI: the normalisation of the data may be wrong: only 16ev. with p<sub>T</sub> > 1GeV and it was not confirmed by any of the 3 LEPII exp.
- CO: perturbatively unstable

#### LEP2 Puzzle: more direct photon processes



Z.Q.Chen, L.B. Chen and C.F. Qiao: PRD 95, 036001 (2017)

- Given the current situation → direct photon processes matter
- In PRD 95: dominant direct γγ → J/ψcc̄ was computed up to NLO in α<sub>s</sub> in CS → but it's not enought to reproduce the data
- the QED contribution to the inclusive yield was never considered for DELPHI and CEPC

DEPLHI data: J. Abdallah et al., PLB 565, 76 (2003)

< 同 ト < 三 ト < 三

# Part II

# Computation of direct-photon $J/\psi(Y) + \gamma$ in $\gamma\gamma$ fusion process

Y. Yedelkina (IJCLab,UCD)

Inclusive  $J/\psi$  and Y production in  $\gamma\gamma$  fusion

Sep. 27, 2023 7/18

A (1) > A (2) > A

#### Squared amplitude

- FeynArts: to generate expressions for Feynman diagrams
- In the amplitudes for the bound state of cc we replace heavy-quark spinors *ū*(*p*<sub>1</sub>) and *v*(*p*<sub>2</sub>) with the Colour Singlet spin projector + contracted colour indices + one momenta:

$$c(p_1) + \bar{c}(p_2) \rightarrow c\bar{c} \begin{bmatrix} {}^3S_1^{(1)} \end{bmatrix} (k_3)$$

- FeynCalc: tensor reduction & find master topologies (7/48 total)
- $\bullet~$  Solve linear dependence in propagators introduced with NRQCD limit  $\rightarrow~$  partial-fractioning

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Partial-fractioning



Equation with linearly-dependant denominators  $(1/(D_1D_2D_3))$ :  $Eq = aD_1(I) + bD_2(I) + cD_3(I) + f = 0$ , where  $a, b, c, f \neq a(I), b(I), c(I), f(I)$ 

2 Two cases

• If 
$$f = 0$$
, then  $Eq/(cD_3)/(D_1D_2D_3)$ :  
 $\frac{1}{D_1D_2D_3} = -\frac{b}{c}\frac{D_2}{D_3}\frac{1}{D_1D_2D_3} - \frac{a}{c}\frac{D_1}{D_3}\frac{1}{D_1D_2D_3}$   
 $= -\frac{b}{c}\frac{1}{D_1D_3^2} - \frac{a}{c}\frac{1}{D_2D_3^2}$   
• If  $f \neq 0$ , then  $Eq/(f)/(D_1D_2D_3)$ :  
 $\frac{1}{D_1D_2D_3} = -\frac{b}{f}\frac{D_2}{D_1D_2D_3} - \frac{a}{f}\frac{D_1}{D_1D_2D_3} - \frac{c}{f}\frac{D_3}{D_1D_2D_3}$ 

Y. Yedelkina (IJCLab,UCD)

#### Evaluation of the master integrals

• Feynman integrals:

$$I(\vec{s};\nu;D) = \int \left(\prod_{j=1}^{L} e^{\gamma_{E}\epsilon} \frac{d^{D}l_{j}}{i\pi^{D/2}}\right) \frac{N(l_{j}\cdot l_{i}, l_{j}\cdot p_{j};D)}{\prod_{j=1}^{p} (m_{j}^{2} - q_{j}^{2} - i\epsilon)^{\nu_{j}}},$$

- Master integrals (MI): integrals with  $v_j = 0, 1$  for each *j*-denominator and  $N(l_j \cdot l_l, l_j \cdot p_l; D) = 1$
- IBP reduction: follow from translation invariance of the loop momentum.
- LiteRed, FIRE, KIRA, FiniteFlow IBP reduction of Feynman integrals to master integrals
- LoopTools library: Feynman integrals are evaluated in an efficient and numerically-stable way

< ロ > < 同 > < 回 > < 回 > < 回 > <

#### Evaluation of the amplitudes

- UV renormalisation: wave-function and quark mass renormalisation counter-terms (in On-shell scheme) restore gauge invariance and cancel  $\mu_R$  dependence of the  $J/\psi + \gamma$  amplitudes
- Fortran: to get differential hadronic cross-section, phase-space integration was performed numerically using CUBA packages (MC integration routines)
- Helac-Onia+MadAnalysis: we generate .lhe files + apply experimental cuts to plot LO cross sections for  $\gamma\gamma \rightarrow J/\psi + ggg$  and  $\gamma\gamma \rightarrow J/\psi + c\bar{c}$
- One of the goals is to work on helicity amplitudes, which could be used to implement *α<sub>s</sub>*-order cross-section computation in MC generators
- In future the one-loop helicity amplitudes for the similar process  $gg \rightarrow J/\psi + \gamma$  are relevant for TMD factorization computations at NLO

# Part III

# Phenomenology study of quarkonium production

Y. Yedelkina (IJCLab,UCD)

Inclusive  $J/\psi$  and Y production in  $\gamma\gamma$  fusion

Sep. 27, 2023 12/18

## K factors for DELPHI and CEPC predictions



- For single-resolved photon contribution K-factor > 1, direct-photon  $(J/\psi + \gamma)$  contribution < 1
- Detailed comparison with the results from Klasen et al. (PRD71, 014016 (2005))
   in progress

Results with LEP2 DELPHI cuts for  $J/\psi$ 



- We computed CS 1-loop QED direct-γ predictions for the 1st time for DELPHI
- QED contribution is relevant at low p<sub>T</sub>
- CS channels  $(J/\psi + ggg)$  and  $(J/\psi + c\bar{c})$  included at LO in  $\alpha_s$

DEPLHI data: J. Abdallah et al., PLB 565, 76 (2003)

< 61 b

э.

#### Predictions with CEPC cuts for $J/\psi$



- We computed CS 1-loop QED direct-γ predictions for the 1st time for CEPC
- QED contribution is relevant at low p<sub>T</sub>
- CS channels  $(J/\psi + ggg)$  and  $(J/\psi + c\bar{c})$  included at LO in  $\alpha_s$

< 同 ト < 三 ト < 三

#### Predictions with CEPC cuts for Y



- We computed CS 1-loop QED direct-photon and single-resolved photon predictions for Y for the 1st time for CEPC
- For Y CO-contribution is smaller
- QED contribution is relevant at low p<sub>T</sub>

< 同 ト < 三 ト < 三

## Exclusive $\gamma + \gamma \rightarrow J/\psi + \gamma$ is within the LHC reach

Thanks to D. d'Enterria and K.Lynch

- Photon efficiency:
  - 2.5 < ρ<sup>γ</sup><sub>T</sub> < 3GeV: O(0.5) due to trigger, expected to grow close to 1 if associated with a J/ψ
  - $p_T^{\gamma} > 3\text{GeV}=O(1)$
- Cross section in UPC PbPb collisions in the CMS at  $\sqrt{s} = 5.02$ TeV for
  - ▶ 1.2 < |y<sup>ψ</sup>| < 2.4</p>
  - |η<sup>γ</sup>| < 2.4</p>
  - $p_T^{\psi} > 2.5 \text{GeV}$
- $\sigma_{LO} = O(10)$ nb, ( $K_{NLO} = O(1)$ )
- Expected event counts:  $\sigma \times \epsilon \times Br \times L_{PbPb} = 10 \times 0.06 \times 13 = O(10)$  events
- Conclusion: exclusive direct-photon (J/ψ + γ) can be measured in ultra-peripheral heavy-ion collisions at the LHC
- This gives us confidence that inclusive  $J/\psi + \gamma$  and  $J/\psi + X$  from photon fusion can be measured at LHC if UPC can be identified in inclusive reactions

イロト 不得 トイヨト イヨト 二日

#### Summary

- LEP puzzle: the experimental data from DELPHI LEP2 overshoots CS+CO NLO- $\alpha_s$  leading  $\gamma\gamma \rightarrow J/\psi + X$  contributions
- It may indicate that we have issues with the normalisation of the data or with the CO model
- CS is more perturbatively stable: direct-photon processes (J/ψ + γ, J/ψ + cc̄) are not negligible
- We computed the first predictions for CS one-loop QED direct-photon production for CEPC and DELPHI and single-resolved photon contributions for  $J/\psi$  production for CEPC
- We computed the first predictions for CS one-loop QED direct-photon and single-resolved photon contributions for Y production for CEPC
- For the computations we used self-written codes based on FeynArts, FeynCalc, KIRA, LoopTools, Fortran CUBA
- Exclusive direct-photon  $(J/\psi + \gamma)$  can be measured in ultra-peripheral heavy-ion collisions at the LHC