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Motivation for GPDs

GPDs are Universal Objects

Probed in exclusive processes (DVCS, etc.)

Related to the energy momentum tensor

Access quark and gluon contributions to the total angular momentum
of the nucleon [Ji, 1997]

Admit a 3D probabilistic interpretation
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Forward Limit

x= k+

P+ is the average momentum fraction of the struck quark

ξ = − ∆+

2P+ is the skewness, or lightcone ”kick”

t = −∆2 is the mandelstam variable, which we do not treat here and
simply set to 0

In the so-called ’forward limit’ GPDs reproduce the well-known PDFs
▶ limt→0 limξ→0 GPD(x , ξ, t) = PDF(xBJ)

This is because the GPDs are a generalization of PDFs from matrix
elements diagonal in momentum space to analogous matrix elements
which are off-diagonal in momentum space
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GPD Modeling

GPDs contribute to DVCS cross sections via Compton Form Factors
via a convolution in x . At leading order in the strong coupling

H =

∫ 1

−1
dxH(x , ξ, t)(

1

ξ − x − iϵ
− 1

ξ + x − iϵ
) (1)

Therefore, there is an inherent deconvolution problem in extracting
GPDs from DVCS data (GPDs aren’t observables, DVCS is exclusive
→ Low statistics)

Enter: GPD Modeling using artificial neural networks to
▶ Fulfill some theoretical constraints at the level of network architecture
▶ Assess systematic uncertainties inherent to this univertible problem
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Generation

The set of GPD replicas as a function of x and ξ (neglecting t
dependence) was produced by fitting a set of GK model GPD
pseudodata using a set of ANNs [H. Dutrieux et al., 2022]

Modeling took place in double distribution space in order to ensure
both polynomiality∫
dxxnHq(x , ξ) =

∑⌊ n
2
⌋

i=0(2ξ)
2iAq

n+1,2i +mod(2, n)(2ξ)n+1Cq
n+1

And to ensure consistency with the forward limit of the GPD H
limξ,t→ξH(x , ξ, t) = PDF(x)

Positivity was enforced numerically
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Example Replica Set
ξ = 0.1:

10−2 10−1 100

x

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
G

P
D

(x
)

Replicas @ ξ = 0.1

Some replicas deviate greatly from the central value when x < ξ (No
ERBL positivity constraint exists)

How might the replica band be further constrained?
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Further Constraint via Lattice Data
We would like to introduce lattice data to further constrain the generated
set of replicas

We don’t have access to lattice data, so we generate mock lattice data

However, lattice GPD data comes in Ioffe time (ν) space, where ν is the
Fourier conjugate of the momentum fraction x .

→ We use a Bayesian reweighting procedure [Herve Dutrieux, 2022]
(Thesis)

Fourier transforming each replica Rk to Ioffe time space at a given
value of ξ

assigning each a weight ωk using a Bayesian reweighting procedure
based on the introduction of mock lattice data

assessing the reduction of uncertainty in both x and ν spaces by using
the weights ωk to calculate ”Reweighted” central values and error bars

Weights are robust against transformations of replicas
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Generation of Mock Lattice Data

The blocks correspond to the three regions in ν: We choose to reweight
using such blocks as:

lattice collaborations will likely provide data in a few different ranges
in ν which will be more highly internally correlated than with one
other

We use mock lattice data created in three ν regions
▶ 0.2 ≤ νi ≤ 2, ∆ν = 0.2
▶ 2.2 ≤ νi ≤ 4, ∆ν = 0.2
▶ 4.4 ≤ νi ≤ 6, ∆ν = 0.4

We choose to reweight using mock lattice data generated at such low ν
as:

that is the region in which lattice data may be provided given the
current state of the arts

the lattice signal vanishes around ν = 10 [Egerer et al., 2021]
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Why Reweight in Blocks at Low ν?

Goal

Reweighting at low values of ν may then be used to constrain them in the
high ν region
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Procedure

1: Calculate the central value µ̄i of the set of replicas at each value νi

0 10 20
ν

−0.4

−0.2

0.0

0.2

0.4

0.6

H
(ν

)

Replicas

µ̄
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Procedure

2: Assign a corresponding standard deviation to each mock lattice
point defined as σi ≡ µ̄i f (νi , b) where b determines the base of an
exponential function f constrained by f (0, b) = 0.05, f (10, b) = 1

0 2 4 6 8 10
ν

0.0

0.2

0.4

0.6

0.8

1.0
f

(ν
;b

)
b=1.1

b=2
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Mock Lattice Data Fabrication: An Example

0.0

0.2

0.4

0.6

H
(ν

);
b

=
1
.1

c = 0

Replicas at ξ = 0.1

Central Value µ̄

µ̄± σLatt

Mock Lattice Data

c = 0.5

0 2 4 6

Ioffe Time ν

0.0

0.2

0.4

0.6

H
(ν

);
b

=
2

0 2 4 6

Ioffe Time ν
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Bayesian Reweighting

}
Raw Central 

Value

Data Point: 
Weight = 0.75

Data Point
Weight = 0.25

Introduced 
Lattice Data

Raw Spread

Reweighted 
Central Value

Reweighted 
Spread}

}
}
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Relevant Metrics

Effective Fraction of Replicas retained after reweighting: τ(ωk)

Central Values: Raw: µ̄; Reweighted: µ̄ω

Standard Deviations: Raw: σ̄; Reweighted: σ̄ω

Local Uncertainty Retainment:
x: Σ(x) ≡ σ̄ω(x)

σ̄(x) ; ν: Σ(ν) ≡
σ̄ω(ν)
σ̄(ν)

Global Uncertainty Retainment:
x: rlnx =

∫
log(d)

dx
log(D)

Σ(x)
x ; ν: rν =

∫
d

dν
D Σ(ν)
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H
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Replicas

µ̄

µ̄± σ̄
µ̄ω

µ̄ω ± σ̄ω
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x

0

1

2

Σ
(x

)

5 10 15 20

ν

0

1

2

Σ
(ν

) rlnx; rν

1

Σ

Data Region

GPD Replicas and Bands: Shown: ξj ′= 0.1; Used: ξj ∈ {0.1}

Low correlation; High precision → Extremely Constraining

Results: rlnx =0.76, τ =0.28, rν=0.14

Σ(ν) is flat and rν is low as replicas are coherent

Σ(x) Peaks above 1 because mock lattice data is used to prioritize
replicas based on their low ν behaviour, and highly weighted replicas
may decohere at high ν (τ is relatively small)
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Monokinematic reweighting at 10 value of ξ
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Low precision, low correlation (top left) and high precision, high
correlation (bottom right) reweightings yield similar uncertainty
reductions with similar values of τ (→ similar ANN replica generation
costs)

Lattice facility of each of these two compromisory options is to be
further investigated
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Conclusions

Multikinematic reweighting at low correlation may mitigate the
reduced effectiveness of low precision lattice data

▶ This may yield uncertainty reductions roughly equivalent to those of
the high precision monokinematic case at midrange ξ

Low precision, low correlation and high precision, high correlation
monokinematic reweightings yield similar uncertainty reductions at
midrange ξ with similar computational costs on the ANN replica
generation side

The realistic situation of correlations is more complicated (inter ν, ξ)

▶ Lattice data and correlation matricies required

We now have a consistent way to combine experimental and
lattice data

▶ Lattice data help to reduce the deconvolution uncertainties in
momentum space by 25-50% at 0th order of the strong coupling.
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Outlook

Calculus of the comparability of many low precision and few high
precision reweightings at low correlation should be further investigated

The similar effectivenesses and computational costs on the ANN
replica generation side of the two compromisory cases (high or low
values of both correlation and precision) should be exploited by
choosing the favorable cases for lattice studies

More refined phenomenological studies should be performed to
constrain highly oscillatory behaviour in x space to expand the range
in ν over which uncertainty reduction may be meaningfully performed

Corrections at first order in the strong coupling need to be
considered.

Lattice data would be more than welcome!
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Ω & χ2
i

We begin by introducing a set of (mock) lattice data Li such at every
value of νi in a chosen range in Ioffe time space we assign a central
value µi and a standard deviation σi

We define the block-diagonal correlation matrix of L, each of whose

blocks takes the form: Ωi ,j(cor) ≡
(
δij + (1− δij)cor

)
σiσj as a

function of the inter-replica correlation, with all inter-block correlation
set to zero

Each replica Rk is then sampled at each of the values νi , generating
the corresponding R̃k

Each Rk is then assigned a corresponding χ2
k defined as

χ2
k ≡ ∑

i ,j(µi − R̃k,i )
(
Ω−1
i ,j

)
(µj − R̃k,j)

The blocks correspond to the three regions in ν:
▶ 0.2 ≤ ν ≤ 2, ∆ν = 0.2
▶ 2.2 ≤ ν ≤ 4, ∆ν = 0.2
▶ 4.4 ≤ ν ≤ 6, ∆ν = 0.4
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Replica Weights ωi & Effective Fraction of Replicas τ

A corresponding set of weights ωk are then calculated from the χ2
k

and the number of (mock) lattice data values introduced N as

ωk ≡ (χ2
k )

N−1
2

Z e−
χ2
k

2 where Z is a normalization factor

We also define τ ≡ exp(
∑

k ωk ln(ωk ))
Nrep

as the effective fraction of replicas
retained after the reweighting is completed, where Nrep is the range of
the index k
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The Trouble with Outliers

We began by calculating the reweighted central value µR(ν; x) and
uncertainties σR(ν; x) as a function of ν or x as

µR(ν; x) =
∑

k ωkRk(ν; x)

σR(ν; x) =
1

1−∑
k ω

2
k

∑
k ωk(Rk(ν; x)− µR(ν; x))

2

However, this method of estimation of the uncertainty associated with the
reweighted central value was extremely sensitive to replicas far from the
central value.
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The Trouble with Outliers

We tried to remove ”outlier” replicas either locally or globally

However, the definition of ”outlier” is not very obvious and is
ultimately arbitrary

We decided to locally employ the MAD (Median Absolute Deviation)
to compute uncertainty bands
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Definition of Multikinematic Reweighting

Establish a set of ξq values called ξused

Perform an individual reweighting of the replicas up to the level of
calculating the χ2

k,q

Define a new per-replica χ̂2
k ≡ ∑

q χ
2
k,q and use these to calculate the

joint weights ωk using the usual formula

At a value of ξ called ξshown use the weights to plot uncertainty
bands. ξshown may or may not be present in the set ξused
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Forward Limit

In the so-called ’forward limit’ GPDs reproduce the well-known PDFs
▶ limt→0 limξ→0 GPD(x , ξ, t) = PDF(xBJ)

This is because the GPDs are a generalization of PDFs from matrix
elements diagonal in momentum space to analogous matrix elements
which are off-diagonal in momentum space
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Nucleon Tomography

When ξ → 0:

|b⃗⊥| and
√−t are Fourier Conjugates

One recovers a Probabilistic Interpretation

Figure: [Moutarde, Sznajder, and Wagner, 2018] Transverse position |b⃗⊥| of
quarks in an unpolarized proton as a function of the longitudinal momentum
fraction x . Based on joint fit of CFFs to Hall A, CLAS, HERMES and COMPASS
data.
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Lattice Errors

Figure 9.a. of [Egerer et al., 2021]:

Ioffe Time ν
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MAD (Median Absolute Deviation) Estimator

We first calculate the central value µR(ν; x) as the median of the set
of replicas weighted by the weights ωk

We then estimate the uncertainty σR(ν; x) as proportional to the
median of a correspondingly weighted distribution given by
|µR(ν; x)− Rk(ν; x)|
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Ioffe Time

→ The longitudinal momentum fraction x , proportional to a quark’s
plus momentum is assigned a lightcone distance proportionality
fraction ν ∝ z− as a Fourier conjugate

GPD(ν, ξ) ≡ −i

∫ 1

−1
dxGPD(x , ξ) sin(xν) (2)
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Results
ξj ′ ξj c b rlnx τ rν

0.1 0.1 0 1.1 0.82 0.47 0.25

0.1 0.1 0.5 1.1 1.02 0.83 0.85

0.1 0.1 0 2 0.78 0.3 0.16

0.1 0.1 0.5 2 0.82 0.46 0.23

0.5 0.5 0 1.1 0.67 0.36 0.44

0.5 0.5 0.5 1.1 0.64 0.52 0.58

0.5 0.5 0 2 0.54 0.11 0.25

0.5 0.5 0.5 2 0.77 0.37 0.51

0.5 0.1 0 1.1 1.24 0.47 0.92

0.5 0.1 0.5 1.1 1.15 0.83 0.93

0.5 0.1 0 2 1.08 0.3 0.9

0.5 0.1 0.5 2 1.23 0.46 0.91

0.5 0.1 0.2 0.3 0 1.1 0.95 0.3 0.62

0.5 0.1 0.2 0.3 0.5 1.1 1.0 0.77 0.82

0.5 0.1 0.2 0.3 0 2 0.54 0.1 0.34

0.5 0.1 0.2 0.3 0.5 2 0.73 0.3 0.61

0.5 0.1 0.2 0.3 0.4 0.5 0 1.1 0.66 0.16 0.19

0.5 0.1 0.2 0.3 0.4 0.5 0.5 1.1 0.75 0.57 0.65

0.5 0.1 0.2 0.3 0.4 0.5 0 2 0.45 0.03 0.13

0.5 0.1 0.2 0.3 0.4 0.5 0.5 2 0.77 0.18 0.25

Table: Results as a function of the reweighting parameters
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f (ν; b) =
0.05(bν − b10) + 1− bν

1− b10
(3)
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Double Distribution Definition

H(x , ξ, t) =

∫
ΩF (β, α, t), dΩ = dβdαδ(x − β − αξ), |α|+ |β| ≤ 1

Michael Joseph Riberdy (DPhN, CEA) GPDs: Combining Experimental and Simulation Data 09/2023 20 / 20


