Light by light scattering in Ultraperipheral collisions @LHC

Ekta Chaubey

29th September 2023

Bethe Center for Theoretical Physics

Assemblée Générale 2023 du GDR & CD Strasbourg, France

For precision physics, precise theoretical predictions are needed — computation of higher-order loop corrections

Analytic structure

Class of functions?

Rich Mathematical structure

Can we identify them?

Can we "use" them?

Multiple Polylogarithms

Elliptic Polylogarithms

K3 surfaces

Higher-dimensional Calabi-Yau manifold

Modern techniques for solving Feynman integrals

$$Maxcut_{C}I_{2001111}(4-2\epsilon) \propto \int_{C} \frac{dP}{\sqrt{(P-t)(P-t+4m^{2})(P^{2}+2m^{2}\frac{s+4t}{s-4m^{2}}P+m^{2}(m^{2}-4t)\frac{s}{s-4m^{2}}}}$$

Functional representation

Chen's definition of iterated integrals: $\gamma : [0,1] \to M$ $x_i = \gamma(0)$ $x_f = \gamma(1)$ [Chen '77]

$$I_{\gamma}(\omega_{1},...,\omega_{k};\lambda) = \int_{0}^{\lambda} d\lambda_{1} f_{1}(\lambda_{1})$$
$$= \int_{0}^{\lambda} d\lambda_{1} f_{1}(\lambda_{1}) I_{\gamma}$$

Numerical evaluation

Numerical evaluation of the functions at various phase-space points

GINAC PolyLogTools [Vollinga, Weinzierl, '05] [Duhr, Dulat, '19]

Local series expansion methods / Iterated integrals [Moriello, '19] [Hidding, '21]

Multiple polylogarithms Elliptic integrals

Canonical DE

Ofcourse PySecDec, Fiesta, Feyntrop Auxiliary mass flow methods [Liu, Ma, '22]

Some selected examples

[Badger, E. Chaubey, Hartanto, Marzucca, '21]

- integral contributions
- Topbox evaluates to 3 different elliptic curves
- Faster numerical evaluation of elliptic functions needs optimisation of the basis [E. Chaubey' 21]

Scattering amplitudes (tt)

Needed for precise understanding of top quarks

Computation of helicity amplitudes for top-quark pair production involves elliptic

1-loop amplitude for tt-jet

[Badger, Becchetti, E. Chaubey, Marzucca, Sarandrea, '22]

• Analytic helicity amplitudes for 1-loop QCD corrections, Previously missing ingredient for NNLO, expansion of the 1-loop helicity amplitudes up to $O(\epsilon^2)$

- Canonical form DE for all 130 MIs across 4 pentagon topologies
- Numerical solution using generalised power series expansion in DiffExp
- Analytic result of boundary constants

2-loop 5-point integrals

[Badger, Becchetti, E. Chaubey, Marzucca, '22]

- One of the topologies that appear in the NNLO corrections for tt-jet production
- 5 Mandelstam variables and mass dependence through top-quarks
- 88 master integrals
- Well-thought basis important to reconstruct analytically

 $\mu_{ij} = -k_i^{(-2\epsilon)} \cdot k_i^{(-2\epsilon)}$

• Evaluation at 1 boundary point with a precision of O(100) using AMFlow • Integration of analytic differential equations using generalised power series expansion as implemented in DiffExp

Two-loop QCD & QED corrections for light-by-light scattering

- The LHC can accelerate not just protons but heavy ions with charges up to Z=82 for lead (Pb) ions. This enables many $\gamma\gamma$ collision measurements in ultraperipheral pp, pn and nn collisions (UPCs).
- Light-by-light scattering one of the few photon-fusion processes observed for the first time at the LHC.

[ATLAS collaboration `17,`19, `20] [Klusek-Gawenda, Schaefer, Szczurek, `16] [Beloborodov, Kharlamova, Telnov, 23]

Important for studies of anomalous quartic gauge couplings, axion-like particles, Born-Infeld extensions of QED or anomalous tau electromagnetic moments as well as for important SM and BSM studies.

Light-by-light scattering at UPCs [Shao, d'Enterria, 22]

Pb

Light-by-light scattering

Pb

 γ

 γ

Gold-plated SM and BSM processes accessible via photon-photon collisions in UPCs at hadron colliders. [Shao, d'Enterria, 22]

Process	Physics motivat		
$\gamma\gamma ightarrow e^+e^-,\mu^+\mu^-$	"Standard candles" for proton/nucleus γ fluxes, EPA cal		
$\gamma\gamma o au^+ au^-$	Anomalous τ lepton e.m. m		
$\gamma\gamma o \gamma\gamma$	aQGC [25], ALPs [27], BI QED [28], noncommu		
$\gamma\gamma ightarrow {\cal T}_0$	Ditauonium properties (heaviest QE		
$\gamma\gamma \rightarrow (c\overline{c})_{0,2}, (b\overline{b})_{0,2}$	Properties of scalar and tensor charmon		
$\gamma\gamma \to XYZ$	Properties of spin-even XYZ heavy-		
$\gamma\gamma \rightarrow VM VM$	(with VM = ρ , ω , ϕ , J/ ψ , Υ): BFKL-P		
$\gamma\gamma \rightarrow \mathrm{W}^{+}\mathrm{W}^{-}, \mathrm{ZZ}, \mathrm{Z}\gamma, \cdots$	anomalous quartic gauge coupli		
$\gamma\gamma \to H$	Higgs- γ coupling, total H		
$\gamma\gamma \to \mathrm{HH}$	Higgs potential [51], quartic		
$\gamma\gamma \to t\bar{t}$	anomalous top-quark e.m. co		
$\gamma\gamma ightarrow ilde{\ell} ilde{\ell}, ilde{\chi}^+ ilde{\chi}^-, \mathrm{H}^{++} \mathrm{H}^{}$	SUSY pairs: slepton [11, 52, 53], chargino [11, 54],		
$\gamma\gamma \rightarrow a, \phi, \mathcal{MM}, G$	ALPs [27, 56], radions [57], monopoles		

- Scale we are probing is 5 GeV (tau, lepton, bottom) should be massive)
- Observed recently [ATLAS collaboration `17,`19, `20]
- Gamma_UPC has been integrated into automated event generators Madgraph5_aMC@NLO for NLO

The loop-induced LbL signal is generated with gamma-UPC plus MADGRAPH5_AMC@NLO v2.6.6 [75, 138] with the virtual box contributions computed at leading order. Table XIV compares the integrated fiducial cross sections measured by ATLAS [15] with the gamma-UPC using EDFF and ChFF γ fluxes and the SUPERCHIC predictions. The measured cross section is about 2 standard deviations above the gamma-UPC and SUPERCHIC predictions.

```
tion
```

culations, and higher-order QED corrections

noments [29–32]

it. interactions [36], extra dims. [37],...

ED bound state) [38, 39]

nia and bottomonia [40, 41]

-quark exotic states [42]

Omeron dynamics [43–46]

ings [11, 26, 47, 48]

width [49, 50]

 $\gamma\gamma$ HH coupling

ouplings [11, 49]

, doubly-charged Higgs bosons [11, 55].

[58–61], gravitons [62–64],...

Gamma UPC

C. Light-by-light scattering in Pb-Pb UPCs at $\sqrt{s_{NN}} = 5.02$ TeV

TABLE XIV: Fiducial light-by-light cross sections measured in Pb-Pb UPCs at $\sqrt{s_{NN}} = 5.02$ TeV (with $E_T^{\gamma} > 2.5$ GeV, $|\eta^{\gamma}| < 2.4$, $m_{\gamma\gamma} > 5$ GeV, $p_{T,\gamma\gamma} < 1$ GeV), compared to the theoretical gamma-UPC results obtained with EDFF and ChFF γ fluxes (and their average), as well as with the SUPERCHIC MC prediction.

Process, system	ATLAS data [15]	gamma-UPC σ			Superchic σ
		EDFF	ChFF	average	
$\gamma\gamma \rightarrow \gamma\gamma$, Pb-Pb at 5.02 TeV	120 ± 22 nb	63 nb	76 nb	70 ± 7 nb	78 ± 8 nb

[AH, E. Chaubey, Shao, To appear]

$\gamma(p_1,\lambda_1) + \gamma(p_2,\lambda_2)$

- 2-loop QCD & QED corrections in the ultra-relativistic limit ($s, t, u >> m^2$, massless internal lines)
- Two-loop corrections to light-by-light scattering in supersymmetric QED

Light-by-light scattering

$$+\gamma(p_3,\lambda_3)+\gamma(p_4,\lambda_4)\to 0$$

[Bern, De Freitas, Dixon, Ghinculov & Wong, 2001]

[Binoth, Glover, Marquard, & van Der Bij, 2002]

Amplitude computation

$$\mathcal{M} = \varepsilon_{1,\mu_1} \varepsilon_{2,\mu_2} \varepsilon_{3,\mu_3} \varepsilon_{4,\mu_4} \mathcal{M}^{\mu_1 \mu_2 \mu_3 \mu_4} (p_1, p_2, p_3, p_4)$$

$$\mathcal{M}^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} = A_{1}g^{\mu_{1}\mu_{2}}g^{\mu_{3}\mu_{4}} + A_{2}g^{\mu_{1}\mu_{3}}g^{\mu_{2}\mu_{4}} + A_{3}g^{\mu_{1}\mu_{4}}g^{\mu_{2}\mu_{3}} + \sum_{j_{1},j_{2}=1}^{3} \left(B_{j_{1}j_{2}}^{1}g^{\mu_{1}\mu_{2}}p_{j_{1}}^{\mu_{3}}p_{j_{2}}^{\mu_{4}} + B^{3}j_{1}j_{2}g^{\mu_{1}\mu_{4}}p_{j_{1}}^{\mu_{2}}p_{j_{2}}^{\mu_{3}} + B^{4}j_{1}j_{2}g^{\mu_{2}\mu_{3}}p_{j_{1}}^{\mu_{2}}p_{j_{2}}^{\mu_{4}} + B^{5}j_{1}j_{2}g^{\mu_{2}\mu_{4}}p_{j_{1}}^{\mu_{1}}p_{j_{2}}^{\mu_{3}} + B^{6}j_{1}j_{2}g^{\mu_{3}\mu_{4}}p_{j_{1}}^{\mu_{1}}p_{j_{2}}^{\mu_{2}}\right) \\ + \sum_{j_{1},j_{2},j_{3},j_{4}=1}^{3} C_{j_{1}j_{2}j_{3}j_{4}}p_{j_{1}}^{\mu_{1}}p_{j_{2}}^{\mu_{2}}p_{j_{3}}^{\mu_{3}}p_{j_{4}}^{\mu_{4}}.$$

Number of independent functions

$$A_1(s, t, u)$$
 $B_{11}^1(s, t, u)$

[Binoth, Glover, Marquard, & van Der Bij, 2002]

 $C_{2111}(s, t, u)$

 $\varepsilon_j \cdot p_j = 0$

Bose symmetry

Gauge symmetry

Reduction to MIs & Simplification

 I_{a_1,\cdots,a_9}

 $k_1^2 - (k_2)$ (k_2)

LiteRed (FiniteFlow), KIRA [Lee, `13] [Peraro, `19] [Klappert, Lange, Maierhöfer, Usovitsch,

60 diagrams in total 7798 integrals before IBP

18 top-level sectors

Can be mapped into the 2-loop diagram shown on the right

$$= \left(\frac{e^{\epsilon\gamma_E}}{i\pi^{\frac{d}{2}}}\right)^2 \int \prod_{i=1}^2 d^d k_i \frac{D_4^{a_4} D_6^{a_6}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_5^{a_5} D_7^{a_7} D_8^{a_8} D_9^{a_9}},$$

- $m_t^2, (k_1 + p_1)^2 - m_t^2, (k_1 + p_1 + p_2)^2 - m_t^2, (k_1 + p_1 + p_2 + p_3)^2 - m_t^2,$
)² - $m_t^2, (k_2 + p_1)^2 - m_t^2, (k_2 + p_1 + p_2)^2 - m_t^2, (k_2 + p_1 + p_2 + p_3)^2 - m_t^2,$
- k_1)²

Analytic computation of the MIs

- 29 MIs; use of differential equations;
- Choice of a canonical basis [Caron-huot, Henn, 14]

• Square roots:

$$\sqrt{s(s-4m^2)}$$
 $\sqrt{t(t-4m^2)}$ $\sqrt{st(st-4m^2(s+t))}$ $\sqrt{s(m^4s-2m^2t(s+2t)+st^2)}$

• Choice of variables

$$s = -\frac{4(w-z)^2}{(1-w^2)(1-z^2)}$$

$$\partial_s \vec{f} = \epsilon A_s \vec{f}$$
$$\partial_t \vec{f} = \epsilon A_t \vec{f}$$

$$t = -\frac{(w-z)^2}{wz} \qquad m^2 = 1$$

 $-2wz + z^2 + w^4z^2 - 2w^3z^3 + w^2(1 + z^2 + z^4)$ Non-rationalizable??..

17

The alphabet

$$sq = \sqrt{-2wz + z^2 + w^4 z^4}$$

$$\begin{split} &1-w,1+w,1-wz,w-z,w,w+z,1+w-z+wz,1-w+z+wz,1+wz,1-z,1+z,\\ &z,\frac{-sq+w-z-wz+w^2z-wz^2}{sq+w-z-wz+w^2z-wz^2},\frac{-sq+w^2-3wz+z^2}{sq+w^2-3wz+z^2},\frac{-1-sq+w^2z-wz^2}{-1+sq+w^2z-wz^2},\\ &\frac{1-sq+w^2z-wz^2}{1+sq+w^2z-wz^2} \end{split}$$

6 master integrals containing all 4 square roots in the integrand at weight-4.

 $\overline{z^2 - 2w^3z^3 + w^2(1 + z^2 + z^4)}$ [Caron-huot, Henn, 14]

Solving the canonical master integrals

We keep the analytic result in terms of iterated integrals with dog one-forms constructed using [Heller, von Manteuffel, Schabinger, `20] We convert all the integral in terms of 1-dimensional integrations [Caron-huot, Henn, 14] [Chicherin, Sotnikov `21] [Chicherin, Sotnikov, Zoia `22] We also express the first two orders in terms of logs and classical polylogs by matching symbols

[Duhr, Gangl, Rhodes, `11]

$$\int_{\gamma} I(\omega_1 \dots \omega_4; \lambda) = \int_0^{\lambda} d\lambda_1 f_1(\lambda_1) \int_0^{\lambda_1} d\lambda_2 f_2(\lambda_2) \underbrace{\int_0^{\lambda_2} d\lambda_3 f_3(\lambda_3) \int_0^{\lambda_3} d\lambda_4 f_4}_{\{\operatorname{Log}^2(z), \operatorname{Li}_2(z)\}}$$

Numerical evaluation

Physical phase-space regions of interest

0 < w < 1 & (0)0 < w < 1 & (1)0 < w < 1 & (-1)

We obtain different analytic representations of the results valid in different regions

$$< z < w \mid w < z < 1$$
)
 $< z < \frac{1}{w} \mid z > \frac{1}{w}$)
 $1 < z < -w \mid -w < z < 0$)

We obtained a completely analytic representation for the squared matrix element at 2-loop NLO cross section with massive contributions for light-by-light scattering at UPC within reach!

Take away

- Computation of higher order perturbative corrections important
- Analytic solution of multi-loop integrals requires understanding the mathematical structure
- With the inclusion of masses in the loop, the analytic structure starts becoming more complicated
- With the inclusion of more legs, often one needs go beyond current mathematical understand; often also desirable to combine analytic as well as numerical techniques