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Heavy lon Collision is highly dynamical kinetic freeze-out
e Short lived Hadron Gas \
[ -
e Small size 7

e Out of equilibrium evolution
=>Dynamics of fluctuations in HIC

Can a signal from the critical point survive, and have effects that can be

detected after freeze-out? .



Fluid dynamics and Fluctuations

Successful at describing the spacetime evolution of systems created in heavy

ion collisions
- Describes QGP-HG phase transition by including an adapted equation of state

- Current models limited to event-averaged quantities

- . Deterministic (Hydro+)
Descrlblng the ImpaCt of Stephanov, Yin 1712.10305

fluctuations is important, Rajagopal, Ridgway, Weller, Yin 1908.08539
. An, Basar, Stephanov, Yee 1902.09517, 1912.13456
especially at phase

Pradeep, Rajagopal, Stephanov, Yin 2204.00639
transition; near the critical
point, dynamical evolution
and critical phenomena
intertwine

2 approaches

Stochastic Fluid Dynamics
Challenge: lattice spacing
dependence introduced by noise
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Chiral Fluid Dynamics

Couple fluid dynamic evolution of fireball to fluctuations of chiral order parameter
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Relaxation Model

Decouple the equations and consider a simpler model:
Stochastic Relaxation Equation
0%p(7,1) Op(Z,t)  OVesrlyl

R 2 v p—
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Effective potential
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The noise € is defined by
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Lattice Spacing Dependence

- UV divergences caused by the noise translate as non-physical lattice
spacing dependence in numerical simulations
1
0T —T) — —
(¥ — ) 73
- Loop corrections in the ¢* theory also introduce UV divergences

.0, 00 .,

The tadpole diagram in the expansion of 2-point function gives a correction term (form
depends on the regularisation/renormalization scheme)

Jansen and Nickel

Improved solution: lattice regularisation




Numerical simulations

e 3D system at fixed temperature: cubic lattice of sides L=20 fm, volume L3

N cells in each direction — Lattice spacing (use dx for simplicity)

L
der = dy = dz = =
X Y ¢= 5

e Discretize time: repeat simulations for a number of time steps until
equilibrium is reached

e Periodic boundary conditions

e (Code on GPU: input equations and parameters — evaluate the dynamical
variable = derive relevant observables (correlation function, different
moments, etc.)



Linear Approximation of V. £=1,1=0)

Consider system without interactions 0.8 S
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Linear Approximation of V., £=1,1-=0

Integrate correlation function in 1d to benchmark a logarithmic dx dependence
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Observables: Mean and Variance

-> Mean

(v ®) = 3, [ Prplt

We are interested in fluctuation observables
-> Variance

1 — —
@ 0) = [ [ Endnc -
Where

L
Xgaivoc‘zsphere
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mean

Mean and Variance at Equilibrium =-71=0.7 Broken Symmetry
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Both observables are clearly dx dependent



Lattice Regularisation

Equilibrium counterterm to correct Veg from mass renormalization procedure

3N T 3N2T?
Ve =\ dn T sz 1

e >=3.1759, (=0.09
e M renormalization scale
e lLeading 1/dx dependence

6
dx M

Cassol-Seewald et al. 0711.1866

g02
) + C] } R Farakos et al. 9412091, 9404201v1

Gleiser, Ramos 9311278v

Equilibrium and dynamical evolution,
with and without counterterm, for

e=-1 (broken symmetry)

€=0.1 (close to critical point)
A=0.1and A=0.25

T=M=n=1

All quantities are dimensionless
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Equilibrium e=0.1 close to Critical Point
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Close to the critical point, as € decreases, the correlation length diverges r. = 1/1/¢
Long-range fluctuations add up and the variance increases with the volume

Same counterterm corrects lattice spacing dependence close to critical point
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Carbon footprint

Vi bl

Numerical calculations were carried out on GPUs at the in2p3 computing
center

Number of GPU usage hours — TDP (thermal design power) of GPU to
evaluate energy consumption — average CO,/kWh in France for 2022

Cautious estimate between 325 and 390 KgCO, eq

For results shown here

Average household emissions per month in France 22 KgCO, eq
Average flight Nantes-Paris emissions per passenger 65.3 KgCO, eq
My train ride from Nantes to Strasbourg 2.3 KgCO, eq

Issues with accuracy of estimate
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Summary and Outlook

e Properly benchmarked the fluctuations in the code

e Shown lattice spacing dependence of mean and variance

e Same counterterm works in equilibrium for mean and fluctuations both in
the vicinity of the critical point and in the broken symmetry phase

e More work needed to understand effect of counterterm on dynamical
evolution especially close to the critical point

\

Dynamics for chiral field (Ve and possibly n) in decoupled system first
Apply approach to the coupled chiral fluid dynamics: derive proper

counterterm(s)
- Apply approach using realistic initial conditions for HIC and equation of

state of QCD 1,
s

\




Backup: parameter file

Param(

actions: [
(Moments(["sig"]), TotalInterval(from: @, to: 60, total: 1000)),
(Window( ["sig"]), At(60)),
(StaticStructureFactor(["sig"], Radial), At(60)),
(Correlation(["sig"],Radial), At(60)),

1,

config: (t_0: Some(@), t_max: 60, dim: D3S((32,20))),

integrator: RK4(dt: 8.0000e-04),

noises: Some([Normal(name: "xi")]),

symbols: [

"eta =1

eps = -1

lam = 0.1

T=1

sig' = psi

psi' = #°2 sig - etaxpsi - epsksig -lamxsig”™3 - sqrt(2ketaxTxivdxyzxivdt)sxxi
*sig = 0.1",
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Backup: coarse-graining and filtering noise

| ©Gregoire Pihan
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> Coarse-graining over grid of same scale
> Filtering large momenta modes in Fourier space
> Smearing by a Gauss distribution

2001 a in..1704.03553
Baria < lrer = Lnoge < Inyard
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Backup: some equations

3d integral of correlation function in linear approximation

27 2 [ . - X
/—e_r_dr - —/ / / S0 % drdfde = Tl(dz + ro)e = — (X + ro)e ]
dx

4r
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