

Isolated photon spectrum and photon-hadron correlations in Pb_Pb with ALICE

Assemblée Générale GDR QCD - Carolina Arata Supervisors: Gustavo Conesa Balbastre, Julien Faivre

- Transition of nuclear matter to a colour-deconfined medium, quark-gluon plasma (QGP), under extreme conditions of temperature and/or density
 - **QGP** created via ultra-relativistic heavy-ion collisions
 - To study strong interaction

- HARD PROBES: high energy partons (photons and jets) produced in the early stage of the collision
 - o partons traverse the QGP, lose energy then fragment into a **jet**

loss of energy in medium = jet quenching

Nuclear modification factor:

$$R_{AA} = \frac{1}{N_{\text{coll}}} \frac{\text{d } N_{AA} / \text{d } p_{\text{T}}}{\text{d } N_{\text{pp}} / \text{d } p_{\text{T}}}$$

- ° $R_{AA} < 1 \rightarrow$ suppressed by medium
- ° $R_{AA} = 1 \rightarrow \text{transparent to medium}$
- ° $R_{AA} > 1 \rightarrow$ generation in medium

- Direct way to observe the jet quenching effect

3 / 27

Not very sensitive to extract quantitative properties of the QGP

Azimuthal correlations distribution

between the trigger and associated particles

Y: yield of particles in region opposite to the trigger particle

Carolina Arata - Assemblée Générale GDR QCD

High $p_{\rm T}$ trigger particle—hadron correlations: $I_{\rm AA}$

Jet-jet correlations:

CMS, Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

 $I_{AA} = Y_{AA} / Y_{pp}$

Way to observe the jet quenching and how energy is redistributed

Trigger objects like hadrons **not ideal**:

 $p_{\rm T}^{\rm trigger} \neq p_{\rm T}^{\rm parton}$ BIASED REFERENCE

Carolina Arata - Assemblée Générale GDR QCD

Why photons in heavy-ion collisions? ALICE

- Photons are colour-neutral: not affected by QCD medium
- Direct prompt photons produced in initial hard scattering come from $2 \rightarrow 2$ processes

Compton

Annihilation

Perturbative QCD is applicable:

$$d\sigma_{AB \to h}^{hard} = f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_2, Q)$$

$$PDFs$$

 These photons give a handle to test pQCD: constrain PDFs & nPDFs • Allow to tag the initial energy of the parton $p_T^{\gamma} \approx p_T^{\text{parton}} = \text{REFERENCE}$

Carolina Arata - Assemblée Générale GDR QCD

 $d\sigma^{hard}_{ab \to c}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$

Hard scattering (pQCD) Fragmentation function

- Main sources: γ_{decay} from hadronic decays
- Same order $\gamma_{\text{fragmentation}}$ (parton fragmentation) and $\gamma_{2\rightarrow 2}$ (Compton & annihilation)

^o How to identify $\gamma_{2\rightarrow 2}$? Calorimeter identification and isolation

Carolina Arata - Assemblée Générale GDR QCD

- $\sigma_{\text{long, 5x5}}^2$ not enough: necessary to reject the non $\gamma_{2\rightarrow 2}$ photons
 - $\gamma_{2\rightarrow 2}$ photons: produced far from other particles (underlying event (UE) excepted)

- $\sigma_{\text{long, 5\times5}}^2$ not enough: necessary to reject the non $\gamma_{2\rightarrow2}$ photons
 - $\gamma_{2\rightarrow 2}$ photons: produced far from other particles (underlying event (UE) excepted)

- Define a cone radius around a candidate photon: R = 0.2 or 0.4
- Condition on the total $p_{\rm T}$ inside the cone: $p_{\rm T}^{\rm iso, ch} = \sum p_{\rm T}^{\rm tracks in cone} \rho_{UE} \pi R^2 < 1.5$ GeV/c

 $\circ \rho_{\rm UE}$, UE density estimated with η -band method

Carolina Arata - Assemblée Générale GDR QCD

Purity: ABCD method ALICE

Phase space of calorimeter clusters divided in 4 regions: the three background dominated regions (\mathbb{BCD}) used to estimate the background contribution in the signal region (\mathbb{A})

$$P = 1 - \left(\frac{N_n^{\overline{\text{iso}}}/N_n^{\text{iso}}}{N_w^{\overline{\text{iso}}}/N_w^{\text{iso}}}\right)_{\text{data}} \times \left(\frac{B_n^{\text{iso}}/N_n^{\overline{\text{iso}}}}{N_w^{\text{iso}}/N_w^{\overline{\text{iso}}}}\right)_{\text{MC}}$$

Semi data-driven approach, simulation to correct correlations between $p_{\rm T}^{\rm iso, \ ch}$ and $\sigma_{\rm long, \ 5\times 5}^2$

Corrections due to:

Background isolation fraction depends on the circularity

Signal not contained only in A, it spreads over B, C and Dregions

Purity - ABCD method in Pb–Pb and pp ALICE

- Purity for different collision systems and different *R*

Reduce influence of statistical fluctuations with Sigmoid or Erf functions fits \rightarrow used in spectra

Cross section: R = 0.2 and R = 0.4ALICE

Carolina Arata - Assemblée Générale GDR QCD

- Wide $p_{\rm T}$ range
- NLO pQCD predictions (JETPHOX) Theory is centrality independent Only difference:

PDF (pp) vs nPDF $\times N_{coll}$ (Pb–Pb)

Cross section Data / Theory: R = 0.2 and R = 0.4ALICE

Carolina Arata - Assemblée Générale GDR QCD

- Wide $p_{\rm T}$ range
- NLO pQCD predictions (JETPHOX) Theory is centrality independent Only difference:

PDF (pp) vs nPDF $\times N_{coll}$ (Pb–Pb)

Theory & data agreement for both R and systems within uncertainties

Ratio of cross sections with different R ALICE

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} \eta} \Big|_{(R=0.4)} / \frac{\mathrm{d}^2 \sigma}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} \eta} \Big|_{(R=0.2)}$$

- Ratio sensitive to fraction of $\gamma_{\rm fragm}$ surviving the isolation selection
- Quite good agreement with theory in all collision systems
 - Theory (NLO) seems to control:
 - isolation mechanism in $2 \rightarrow 2$ processes
 - direct fragmentation + prompt γ production even in Pb–Pb

15/27

$$R_{AA} = \frac{1}{N_{\text{coll}}} \frac{\text{d } N_{AA} / \text{d } p_T}{\text{d } N_{\text{pp}} / \text{d } p_T}$$

• 0-50%: consistent with 1 Model comparison: *NLO pQCD ratio* $p_{\rm T}$ > 20 GeV/ $c \rightarrow$ agreement

 $p_{\rm T}$ < 20 GeV/ $c \rightarrow$ some tension

• 50-90% < 1 due to centrality selection bias of Glauber model

Agreement *with model* by C. Loizides & A. Morsch Phys.Lett.B 773 (2017)408-411

Carolina Arata - Assemblée Générale GDR QCD

$$R_{AA} = \frac{1}{N_{\text{coll}}} \frac{\text{d } N_{AA} / \text{d } p_T}{\text{d } N_{\text{pp}} / \text{d } p_T}$$

- 0-50%: consistent with 1 Model comparison: *NLO pQCD ratio* $p_{\rm T}$ > 20 GeV/ $c \rightarrow$ agreement
 - $p_{\rm T}$ < 20 GeV/ $c \rightarrow$ some tension
- 50-90% < 1 due to centrality selection bias of Glauber model

Agreement *with model* by C. Loizides & A. Morsch *Phys.Lett.B* 773 (2017)408-411

• Comparison to CMS: overall agreement

No modification of prompt photon yield due to the QGP

1.4⊦ 1.2 0.8 0.6 0.4 0.2 10

Carolina Arata - Assemblée Générale GDR QCD

 γ^{iso} – hadron correlations in Pb – Pb

- Prompt γ associated with a parton emitted in opposite direction
- Allow to tag the initial energy of the parton $p_T^{\gamma} \approx p_T^{\text{parton}} = REFERENCE$
 - Azimuthal correlations distribution $\Delta \varphi = (\varphi^{\text{trig}} \varphi^{\text{assoc}})$
 - $z_{\rm T} = p_{\rm T}^{\rm hadr}/p_{\rm T}^{\gamma} \rightarrow$ **Observable:** the hadrons $p_{\rm T}$ distribution

Carolina Arata - Assemblée Générale GDR QCD

$\circ D(z_{\rm T})$ is a proxy for the jet fragmentation function \rightarrow information on energy redistribution

150 hadron correlations in Pb—Pb: analysis flow ALICE

 $0.20 < z_{\rm T} < 0.30$ d $|\Delta \varphi|$ 0.16 0.14 $d\Delta\eta$ 0.12 0.1 0.08 2 $200 \ll Z_{\rm T} < 0.30$ 0.04 0.02 0 -0.02 $2.5 \quad 3$ $\Delta \varphi \text{ (rad)}$ 0.5 1.5 0 2

ALICE preliminary **30–50%** Pb–Pb, $s_{NN} = 5.02 \text{ TeV}, |\eta^{\text{trig}}| < 0.67$ $20 < p_{_{
m T}}^{\rm trig} < 25 ~{
m GeV}/c \otimes p_{_{
m T}}^{\rm h} > 0.5 ~{
m GeV}/c$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$

Same Event

b–Pb,
$$s_{NN} = 5.02 \text{ TeV}, |\eta^{\text{trig}}| < 0.67$$

< 25 GeV/ $c \otimes p_T^h > 0.5 \text{ GeV}/c$
w: 0.10 < $\sigma_{\text{long}, 5x5}^2 < 0.30$

1SO hadron correlations in Pb—Pb: analysis flow ALICE

 $0.20 < Z_{\rm T} < 0.30$ Purity₆ correction 0.08 $0.15 < \frac{3}{2}$ $0.20 < Z_{T} < 0.30$ $\times 10^{-3}$ 0.04 $|\Delta \varphi|$ 0.02 60 -0.02 \mathbf{O} 50 2.5 S ∆φ (Kad) 2.5 3 $\Delta \varphi$ (rad) 0.5 0 2 40 30 ALICE preliminary 20 **30–50%** Pb–Pb, $s_{NN} = 5.02$ TeV, $|\eta^{trig}|$ 10 $20 < p_{\tau}^{\text{trig}} < 25 \text{ GeV}/c \otimes p_{\tau}^{\text{h}} > 0.5 \text{ GeV}/c$ 2 ()cluster_{narrow}: $0.10 < \sigma_{\text{long}, 5x5}^2 \leq 0.30$ -10 Same Event -20 Mixed Event Same Event $\Delta \varphi$ (rad) 0.5 **0**.5 1.5 1.5 0 2 $2.5 \quad 3$ $\Delta \varphi \text{ (rad)}$ $0.40 < Z_{\tau} < 0.60$ Remove residual background (π°) ALICE preliminary 10 ALICE preliminary 10 sing Purity correction **30–50%** Pb–Pb, $s_{NN} = 5.02 \text{ TeV}, |\eta^{trig}| < 0$ **30–50%** Pb–Pb, $s_{NN} = 5.02 \text{ TeV}, |\eta^{\text{trig}}| < 0.67$ $20 < p_{\tau}^{\text{trig}} < 25 \text{ GeV}/c \otimes p_{\tau}^{\text{h}} > 0.5 \text{ GeV}/c$ Integrate away-side for every $25 \text{ GeV/c} \otimes p_{-} > 0.5 \text{ GeV/c}$ $= p_{\rm T}^{\rm had tr} / p_{\rm T}^{\gamma} \text{ bin}^{\gamma} \text{ bin}^{\gamma} \text{ cluster}_{\rm narrow}^{\rm iso} p_{\rm T}^{\gamma} 0.10 < \sigma_{\rm long, 5x5}^2 < 0.30$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$ cluster^{iso}_{wide}: $0.40 < \sigma^2_{long, 5x5} < 1.0020 / 27$

 $2.5 \ \Delta arphi$

γ^{iso} — hadron correlations in Pb—Pb: analysis flow

$D(z_{\rm T})$ distributions ALICE

Carolina Arata - Assemblée Générale GDR QCD

$D(z_{\rm T})$ distributions

Carolina Arata - Assemblée Générale GDR QCD

$I_{\rm NLO\ pQCD}$ and $I_{\rm CP}$

24 / 27

1SO -hadron correlations: LHC and RHIC ALICE

LHC, Pb–Pb 5.02 TeV

Carolina Arata - Assemblée Générale GDR QCD

CMS, Phys.Rev.Lett. 121 (2018) 242301, 2018

γ-jet, 0-10%

anti-k_T jet R = 0.3, $p_{T}^{\text{jet}} > 30 \text{ GeV}/c$, $|\eta^{\text{jet}}| < 1.6$ $|\Delta \varphi_{\gamma-\text{iet}}| > \frac{7}{8} \pi, |\eta^{\gamma}| < 1.44 \ p_{\tau}^{\gamma} > 60 \ \text{GeV}/c \otimes p_{\tau}^{\text{h}} > 1 \ \text{GeV}/c$

CMS, Phys.Rev.Lett. 128 (2022) 122301, 2022

Z-hadron, 0–30%

 $|\Delta \varphi_{Z-h}| > \frac{7}{8} \pi, p_{T}^{Z} > 30 \text{ GeV}/c \otimes p_{T}^{h} > 1 \text{ GeV}/c$

25 / 27

1SO –hadron correlations: LHC and RHIC ALICE

LHC, Pb-Pb 5.02 TeV

Carolina Arata - Assemblée Générale GDR QCD

RHIC, Au–Au 200 GeV

γ^{iso} – hadron correlations: LHC and RHIC

LHC, Pb-Pb 5.02 TeV

Not completely apples-to-apples comparison Similar behaviour as observed at LHC and RHIC experiments

RHIC, Au-Au 200 GeV

27 / 27

Summary and prospects

last years: the *results in Pb—Pb were the last missing step*

Isolated γ spectra in pp and Pb—Pb at $\sqrt{s_{NN}} = 5.02$ TeV

• Cross section measurements with R=0.4 and $R=0.2 \rightarrow$ agreement with theory

• $R_{AA} \simeq 1$ in 0–50% and $R_{AA} \simeq 0.9$ in 50–90% \rightarrow Next steps: extend if possible to lower $p_{\rm T}$ and publication Isolated γ – hadron correlations in Pb – Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Modification stronger for central compared to peripheral collisions
- Results described by models, but discrimination not possible yet \Rightarrow Next steps: include a lower $z_{\rm T}$ bin, extend if possible to lower $p_{\rm T}^{\gamma}$ and publication

- Various analyses on isolated photon in pp and p-Pb have been released or published during the

Thank you all for the attention!

^{1SO}-hadron correlations: LHC and RHIC ALICE

 Z_{T}

STAR, Phys.Lett.B 760 (2016) 689-696 **0–12%** Au–Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ $|\Delta \varphi_{v-h} - \pi| \le 1.4$ $12 < p_{_{T}}^{\gamma} < 20 \text{ GeV}/c \otimes p_{_{T}}^{h} > 1.2 \text{ GeV}/c$ PHENIX, PRL 111, 032301 (2013) **0–40%** Au–Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ $|\Delta \varphi_{\gamma-h} - \pi| < \pi/2, |y| < 0.35$ $5 < p_{\tau}^{\gamma} < 9 \text{ GeV}/c \otimes 0.5 < p_{\tau}^{h} < 7 \text{ GeV}/c$

CMS, Phys.Rev.Lett. 121 (2018) 242301, 2018 *γ*−**jet**, 0−10% anti-k_T jet R = 0.3, $p_{T}^{\text{jet}} > 30 \text{ GeV}/c$, $|\eta^{\text{jet}}| < 1.6$ $|\Delta \varphi_{\gamma-iet}| > \frac{7}{8} \pi, |\eta^{\gamma}| < 1.44 \ p_{T}^{\gamma} > 60 \ \text{GeV}/c \otimes p_{T}^{h} > 1 \ \text{GeV}/c$

CMS, Phys.Rev.Lett. 128 (2022) 122301, 2022 *Z*-hadron, 0–30% $|\Delta \varphi_{Z-h}| > \frac{7}{8} \pi, p_T^Z > 30 \text{ GeV}/c \otimes p_T^h > 1 \text{ GeV}/c$

Carolina Arata - Assemblée Générale GDR QCD

Photon sources:

- $\gamma_{\rm decay}$, from hadronic decays
- direct γ , not originated from hadronic decays

Prompt γ from the initial hard scattering:

- Compton and annihilation: $\gamma_{2\rightarrow 2}$
- parton fragmentation: $\gamma_{\rm fragm}$

Non—prompt γ during <u>all</u> QGP - hadron gas phases:

- pre-equilibrium photons, γ_{pre-eq}
- thermal photons, γ_{thermal}

Photon identification with EMCal

A particle interacting with the *cell material* produces a shower spreading its energy over *neighbouring cells*.

• *Cluster*: aggregate of cells

The **distribution of energy** within a cluster allows to discriminate between single photons γ shower and overlapping γ showers (γ_{decav}) from high energy $\pi^0 \rightarrow \gamma \gamma$

 $\sigma_{\text{long}}^2 \pi^0 \rightarrow \text{cluster}_{\text{wide}}$: elliptical cluster

EMCal cluster shower lateral dispersion parameter ALICE

• For Pb–Pb, let's just consider the cells around the highest energy cell in a 5x5 fixed window in the $\sigma_{\text{long, 5x5}}^2$ calculation, independently if cells were assigned to the V3 cluster

• Those cells must be all neighbours

- The cluster energy and position remains the same as the V3 cluster
- Use same definition in pp and Pb–Pb collisions

• Shower shape parameter $\sigma_{long, 5\times 5}^2$ is related to the longer axis of the cluster ellipse Parameter depends on cluster cells location and its energy

$$\frac{w_i \beta_i}{w_{\text{tot}}} \qquad \sigma_{\text{long}}^2 = 0.5(\sigma_{\varphi\varphi}^2 + \sigma_{\eta\eta}^2) + \sqrt{0.25(\sigma_{\varphi\varphi}^2 - \sigma_{\eta\eta}^2)^2 + \sigma_{\varphi\varphi}^2} + \sigma_{\varphi\varphi}^2 + \sigma_{\eta\eta}^2) - \sqrt{0.25(\sigma_{\varphi\varphi}^2 - \sigma_{\eta\eta}^2)^2 + \sigma_{\varphi\varphi}^2}$$

$$E))$$

35

EMCal cluster shower shape ALICE

Carolina Arata - Assemblée Générale GDR QCD

Isolation energy in cone for R = 0.2 & 0.4 ALICE

Carolina Arata - Assemblée Générale GDR QCD

TPC acceptance

methods [24] in p-rmilable abaraac

 ϕ η

 η 1 at

- Phase space of calorimeter clusters divided in 4 regions:
- A, signal dominated & B-C-D, background dominated

A:
$$0.1 < \sigma_{\text{long, 5\times5}}^2 < \sigma_{\text{max}}^2(p_{\text{T}}), \quad p_{\text{T}}^{\text{iso, ch}} < 1.5 \text{ GeV/c}$$

B: $0.1 + \sigma_{\text{max}}^2(p_{\text{T}}) < \sigma_{\text{long, 5\times5}}^2 < 2.0, \quad p_{\text{T}}^{\text{iso, ch}} < 1.5 \text{ GeV/c}$
C: $0.1 < \sigma_{\text{long, 5\times5}}^2 < \sigma_{\text{max}}^2(p_{\text{T}}), \quad 4 < p_{\text{T}}^{\text{iso, ch}} < 25 \text{ GeV/c}$
D: $0.1 + \sigma_{\text{max}}^2(p_{\text{T}}) < \sigma_{\text{long, 5\times5}}^2 < 2.0, \quad 4 < p_{\text{T}}^{\text{iso, ch}} < 25 \text{ GeV/c}$
with $\sigma_{\text{max}}^2 = 0.6 - 0.016 \cdot p_{\text{T}} \ge 0.3$ (Pb-Pb) or $\sigma_{\text{max}}^2 = 0.3$ (p

• Purity in A region extracted as:

$$P = 1 - \left(\frac{N_n^{\overline{\text{iso}}}/N_n^{\text{iso}}}{N_w^{\overline{\text{iso}}}/N_w^{\text{iso}}}\right)_{\text{data}} \times \left(\frac{B_n^{\text{is}}}{N_w^{\text{iso}}}\right)_{\text{data}}$$

data-driven

PYTHIA: $N_{n,w}^{iso,\overline{iso}}$ = jet-jet ($B_{n,w}^{iso,\overline{iso}}$) + γ -jet ($S_{n,w}^{iso,\overline{iso}}$)

Purity for R = 0.2 \& 0.4 ALICE

- <u>correct the spectra</u>
- P(R = 0.2) > P(R = 0.4), due to UE fluctuations, although not significantly different
- P (Pb–Pb) > P (pp) due to better tracking and higher N (γ) / N (π^0) ratio ($R_{AA}(\pi^0) < < 1$)

Distributions fitted to Sigmoid or Erf functions to reduce influence of fluctuations, fits used to

P(R = 0.4) > P(R = 0.2) in pp collisions, more jet particles in cone, but decreasing centrality

Cross section calculation ALICE

Ingredients:

- Trigger efficiency: $\varepsilon_{\rm trig}$
- Rejection factor: RF_{trig}
- EMCal acceptance correction Acc: 0.527
- Minimum bias cross section: $\sigma_{\rm MB}$
- N_{coll}
- Purity
- Efficiency:

Efficiency per selection cut:

$$\varepsilon^{\text{sel}} = \frac{dN_{\gamma_{\text{prompt}}}^{\text{cluster sel.}}/dp_{\text{T}}^{\text{rec}}}{dN_{\gamma_{\text{prompt}}}^{\text{gener.}}/dp_{\text{T}}^{\text{gen}}}$$

Carolina Arata - Assemblée Générale GDR QCD

- Reconstruction
- PID (shower shape)
- Isolation

	σ_{MB} (mb)	$N_{ m col}$
pp	50.87 (2.1%)	1
Pb–Pb	67.6 (0.88%?)	
0-10%		$1572 \pm 17.4 \ (1.1\%)$
10-30%		$783.05 \pm 7.0 \ (0.9\%)$
30-50%		$264.75 \pm 3.3 (1.2\%)$
50-90%		$38.42 \pm 0.6 \ (1.6\%)$

Final efficiency:

, ISO -hadron correlations in Pb—Pb: UE subtraction ALICE

Carolina Arata - Assemblée Générale GDR QCD

30-50%

,1SO -hadron correlations in Pb-Pb: purity correction 80+* 88 ALICE

30–50%

Carolina Arata - Assemblée Générale GDR QCD

Narrow cluster

ALICE preliminary **30–50%** Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV, $|\eta^{\text{trig}}| < 0.67$ $20 < p_{_{
m T}}^{_{
m trig}} < 25 ~{
m GeV}/c \otimes p_{_{
m T}}^{_{
m h}} > 0.5 ~{
m GeV}/c$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$ cluster_{wide}: $0.40 < \sigma_{long, 5x5}^2 < 1.00$ • cluster^{iso}narrow (1-*P*) · cluster^{iso} $\dot{\gamma}^{iso}$

-hadron correlations in Pb—Pb: UE subtraction

0–10%

ALICE preliminary **0–10%** Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV, $|\eta^{\text{trig}}| < 0.67$ $20 < p_{\tau}^{\text{trig}} < 25 \text{ GeV}/c \otimes p_{\tau}^{\text{h}} > 0.5 \text{ GeV}/c$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$

Same Event

Mixed Event

Same Event - Mixed Event

γ^{iso} -hadron correlations in Pb–Pb: purity correction $\widehat{\otimes}$ - $\widehat{\otimes}$

0–10%

ALICE preliminary **0–10%** Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV, $|\eta^{\text{trig}}| < 0.67$ $20 < p_{_{T}}^{_{trig}} < 25 \text{ GeV}/c \otimes p_{_{T}}^{_{h}} > 0.5 \text{ GeV}/c$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$ cluster_{wide}: 0.40 < $\sigma_{\text{long}, 5x5}^2$ < 1.00 • cluster^{iso}_{narrow} $(1-P) \cdot \text{cluster}_{\text{wide}}^{\text{iso}}$ φ γ^{iso}

-hadron correlations in Pb—Pb: UE subtraction

10-30%

ALICE preliminary **10–30%** Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, $|\eta^{\text{trig}}| < 0.67$ $20 < p_{_{
m T}}^{_{
m trig}} < 25 ~{
m GeV}/c \otimes p_{_{
m T}}^{_{
m h}} > 0.5 ~{
m GeV}/c$ cluster^{iso}_{narrow}: $0.10 < \sigma^2_{long, 5x5} < 0.30$

- Same Event
- Mixed Event
- Same Event Mixed Event

γ^{iso} -hadron correlations in Pb—Pb: purity correction $\widehat{\otimes}$ + $\widehat{\otimes}$

10-30%

ALICE preliminary

10–30% Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, |\eta^{\text{trig}}| < 0.67$ $20 < p_{_{
m T}}^{_{
m trig}} < 25 ~{
m GeV}/c \otimes p_{_{
m T}}^{_{
m h}} > 0.5 ~{
m GeV}/c$ cluster^{iso}_{narrow}: 0.10 < $\sigma^2_{long, 5x5}$ < 0.30 cluster^{iso}_{wide}: $0.40 < \sigma^2_{long, 5x5} < 1.00$ • cluster^{iso}narrow (1-*P*) ⋅ cluster^{iso}_{wide} γ^{iso}

-hadron correlations in Pb—Pb: UE subtraction

50-90%

γ^{iso} -hadron correlations in Pb–Pb: purity correction $\widehat{\otimes}$ - $\widehat{\otimes}$

50-90%

ALI-PREL-556709

Carolina Arata - Assemblée Générale GDR QCD

