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Between physics and ecology

POPb (1,61 nb) + pp (302 pb), 6.02 TeV.
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Change in annual average global temperature from
pre-industrial levels (1850-1900) in degrees C
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Introduction More is different

Elementary brick or many-agents system?

@ QGP links:
@ The world of particle physics:
why? = more elementary components
@ and that of statistical physics:
why? ==» system perspective, many agents

More Is Different

@ More is different,

Phil Anderson, 1972 Broken symmetry and the nature of
the hierarchical structure of science.

X Y

solid state or elementary particle

many-body physics physics
chemistry many-body physics
molecular biology chemistry
cell biology molecular biology
psychology physiology
social sciences psychology

But this hierarchy does not imply
that science X is “just applied Y.”

@ Emergent phenomena: interactions between many simple agents (i.e. complex systems)
lead to original system properties, far from those of a single agent.

Example: phase transitions!
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Introduction More is different

o QGP = a “state of matter”, a “medium” ...
as can be ensembles of living beings

@ Continuity of approaches from “elementary” particles
(first principles) to their collective behaviour:

o Historically:

o
5/32

Plasma and collectivity

agent-based models

spin models

statistical physics

dynamical models (diff. equations)

scaling laws
networks
evolutionary game theory

thermodynamics then particle physics
bird biology then flocks
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(LTSI Sociophysics

Sociophysics, scaling laws, networks

@ Sociophysics = humans as particles? E";@

o Interdisciplinarity = complementary approach, not replacement

Geoffrey

Wesl

@ Example success stories with complex systems
(including from Santa Fe Institute):

Scaling laws / allometry (urbanization, Networks: influence of structure on dynamics
(Internet, disease and opinion propagation ...)

animal morphology, businesses ...)
® s Original
2 tweet

swi

Relweets Cascades.
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Effects of the QGP on B. mesons

@ Dissociation: screening of heavy-quark potential
Bc: binding energy between J/v and T(15)

Recombination
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Effects of the QGP on B. mesons

@ Dissociation: screening of heavy-quark potential
Bc: binding energy between J/v and T(15)

@ Recombination: many ¢ produced in PbPb + small o(B.) in pp
= large enhancement at pr < mp.?

Recombination
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Effects of the QGP on B. mesons

@ Dissociation: screening of heavy-quark potential
Bc: binding energy between J/v and T(15)

@ Recombination: many ¢ produced in PbPb + small o(B.) in pp
= large enhancement at pr < mp.?

@ Energy loss: universal at high pr,
mass and color charge dependence at low-mid pt

Recombination

27.4 pb™! (5.02 TeV pp) + 530 b (5.02 TeV PbPb) B D
[0+ D D
1.6-CMS & charged hadrons
14b o Byl <24
: nonprompt J/y
1.2F + 18<ly<24
- Tan and_ lumi. * lyl<24 [
s F o ¢ L b Dissociation
o og- b
0.6/ +
'..a-. L >
0.4 ag 2 !
<1 -z [
02f cont. 0_|1Y<|m% Energy loss @ G. Falmagne
>
0 1 Il lz ] l
1 10 Hard Processes

10
P, (GeV/c)
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Challenges for first observation of B, in heavy ions

e Semi-leptonic channel B} — (J/¢ — pp)p' v,

@ Signal = a slightly displaced vertex of three muons,
with an opposite-sign pair in the J/1) mass peak region

C c 7" wt
ol
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Challenges for first observation of B, in heavy ions

e Semi-leptonic channel B} — (J/¢ — pp)p' v,

@ Signal = a slightly displaced vertex of three muons,
with an opposite-sign pair in the J/1) mass peak region

o Partially reconstructed
= use visible trimuon kinematics
and trimuon mass € [3.2,6.3] GeV
=—> Need good understanding of backgrounds

fie ey
ol e e

G. Falmagne

6000 CMS
Simulation
5000 s _H
d
4000
3005”-]/ P + H mB.
2000 le
f
1000 / ‘LLHW
" ‘
0 T
3 35 4

.5 55 6 .5
generated trimuon mass [GeV]
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Acc&Eff tag-and-probe
m: @fac(ors

Nuisance parameters:
normalisation modifiers
shape modifiers

Fiducial cuts JI¥ choice
s> o e opwoupi>
BDT/mass ||
BDT-dependent decorrelation
« fre :

7 Signal
1d:
Acceptance and
Efficienc

ancillary

Acc&Eff

Fit method

Run oniatrees variations

Preselection

Fit method
variations

Single muon:
acceptance cuts
+ selection

a priori First step
normal

Second step

N -
Re-run with
\ 1 centrality

MC pr correction
from 2nd-step
measurement

MC pr correction
from measurement

bin-to-bin
correlations

3rdstep

Statistical test
+ interpretatiol

toy pr variations]



Analysis strategy

@ Selection + BDT training Acceptance
BDT B{Template fit : and efficiency
corrections

second step

pr correction of MC
from measurement

cross-sections
Rpbpp

Final
Acc&Eff
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Analysis strategy

@ Selection + BDT training @ B{
BDT Template fitJj
@ Trimuon mass templates

for background and signal second step

Acceptance
and efficiency
corrections

pr correction of MC
from measurement

@ Template fit of trimuon mass

cross-sections
Rpbpp

Final
Acc&Eff
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Analysis strategy

@ Selection + BDT training @ B{
BDT Template fitJj
@ Trimuon mass templates

for background and signal second step

Acceptance
and efficiency
corrections

pr correction of MC
from measurement

@ Template fit of trimuon mass

@ Correct for acceptance and efficiency
=—> p7 spectrum correction of MC

cross-sections
Rpbpp

Final
Acc&Eff

@ Second step of analysis, using corrected MC
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Analysis strategy

@ Selection + BDT training @ B{
BDT Template fitJj
@ Trimuon mass templates

for background and signal second step

Acceptance
and efficiency
corrections

pr correction of MC
from measurement

@ Template fit of trimuon mass

@ Correct for acceptance and efficiency
=—> p7 spectrum correction of MC

cross-sections
Rebpp

Final
Acc&Eff

@ Second step of analysis, using corrected MC
@ Result: Rpppp(Bc) in two pt or centrality bins

Note: Blinding 3/4 of PbPb data signal region until a late stage, to limit analyser bias.
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Selection and BDT

o CMS data from 2018 pp and PbPb,
dimuon trigger (fired by > 2 muons)

@ Weighting strategy for the 1 or 2 dimuons
in the m,,, signal or sidebands regions

BDT

= signal MC
—— JIy sidebands
~—— NonPrompt J/iy MC
—— Prompt Jiy MC
= rotated J/

@ Selection variables: vertexing, displacement, angle
topology, pr imbalance, ...

@ BDT trained on 8 variables.
Not used for selection: fit in 3 BDT ranges.
Separate training for 2 analysis bins.

PbPb
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Background shapes

pp (302 pb™, 5.02 TeV)

L —e— Data
S00-cms Low BDT | o

> L gnal
[ C £ Jhy + random X
g 400 - 35 B 5 Jly X
- N —— Fake Jly + X
o F = = \Wrong-sign
- 300
% purity =0.114
2 N(B) = 336
S 200 ) =
I
o

3

a

pp pr-integrated fit (background-enriched BDT bin)
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Background shapes

pp (302 pb™, 5.02 TeV)

S00-cms Low BDT | g o
> - Signal
[ C £ Jhy + random X
g 400 [~ #2B oy X
- N —— Fake J/ly + X
% 300 [ = = Wrong-sign
g purity = 0.114 o Fake J/@/)
% 200 N(B) =336 —) dimuon mass
8 »  sidebands
100 feelegeles =) data-derived
i - : normalisation
=]
o

pp pr-integrated fit (background-enriched BDT bin)
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Background shapes

‘ o J/1i — ju from +# vertices =p use rotated J/1) sample (data-driven) ‘

| pp (302 pb™, 5.02 TeV)
S00-cms Low BDT | g o
> - Signal
[ C £ Jhy + random X
g 400 - #2B oy X
- N —— Fake J/ly + X
% 300 [ = = \Wrong-sign
g purity = 0.114 o Fake J/@/)
3 200 @) =336 = dimuon mass
8 »  sidebands
100 fooesesetetetdriind —> data-derived
i - : normalisation
=]
o

pp pr-integrated fit (background-enriched BDT bin)
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Background shapes

‘ o J/1i — ju from +# vertices =p use rotated J/1) sample (data-driven) ‘

| pp (302 pb™, 5.02 TeV)
500 - CMS —e— Data
- F Low BDT Signel
[] C £ Jhy + random X
g 400 - #2 B oy X
. N —— Fake Jly + X
o T N
~ 300 r = = \Wrong-sign
e J/1¢ and (mostly fake) 8 purity = 0.114 e Fake J/1
muon from same % 200 N(B) =336 —_ dimuon mass
: from MC 3 ‘ ¢ sidebands
—> ~ the only free bkg 100 e - —> data-derived
® = . .
normalisation in the fit ey : normalisation
3
o

pp pr-integrated fit (background-enriched BDT bin)
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Template fit (pp, pr-integrated)
@ Likelihood fit, simultaneous over 3 BDT bins + 2 pr or centrality bins
@ Nuisance parameters to account for background uncertainties

pp, centrality- and pr-integrated

pp (302 pb™!, 5.02 TeV)

pp (302 pb!, 5.02 TeV)

pp (302 pb!, 5.02 TeV)

Data E o Data
500 Low BDT | oo £ CMS  \iegium BOT 140f-CMS High BDT | e airat

> gnal > 160 = L Signal
[ = Jiy +random X | © F —Hr Jiy +random X [ ‘@ o9 + J/y + random X
g 400 #B Sy X 9140:' #54B 5 Uy X (c?‘ o + 24B Uy X
- —— Fake J/ly + X C\!120'_ —— Fake J/y + X N_100'_ —— Fake J/ly + X
S = = Wrong-sign S E = = Wrong-sign 8 L = = Wrong-sign
o 300 @ 100F 2 gob
% purity = 0.114 % E purity = 0.521 % E purity = 0.817
° : o 80F ° F
3 200 N(B,) =336 3 E N(B,) = 554 3 60F N(B,) = 421
c c E c
& g 60 g r
° ° o E © a0F

40 L

20F 20 :—

3 2 T o T T
4 aqe Q _oF..5 Sqecs - 1 Q _oF..... -
35 4 45 5 55 6 65 7 75 35 4 45 5 55 6 65 7 75 35 4 45 5 55 6 65 7 75
Myupy [GeV] Mypy [GeV] Mypp [GeV]
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o Likelihood fit, simultaneous over 3 BDT bins 4+ 2 pr or centrality bins

Template fit (PbPb, pr-integrated)

@ Nuisance parameters to account for background uncertainties

candidates / 0.30 GeV

14/32

PbPb (1.61 nb™, 5.02 TeV)

PbPb, centrality- and pr-integrated

PbPb (1.61 nb”, 5.02 TeV)

PbPb (1.61 nb”, 5.02 TeV)

E F —e— Data 35F X —e— Data
- CMS Low BDT F CMS  Medium BDT |z g E CMS High BDT |2 gy
E— Er= J/y + random X % 40 [ —H J/y + random X (%D) 30 :_ + J/y + random X
E #* By X g r #*%B sy X s r 2By X
o —Fakedy+x |@ [ —Fakedy+X | S 25F — Fake Jly + X
FoH = = Wrong-sign S 30 L = = Wrong-sign S 20: = = Wrong-sign
F — %) F o F
F purity = 0.016 % r purity = 0.316 % E purity = 0.787

° r ° —

N(B) =31 5 20F S 15: N(B) =48
& F & F
o L © 10|

55

Mupp [GeV]
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Acceptance and efficiency: iterative procedure

@ Wide bins =) « X ¢ is sensitive to the assumed pt spectrum shape
o Correct with our measurement the pt spectrum of MC
@ Re-run the whole analysis with corrected MC

@ Uncertainty:

N \\\;?erllsg :> varied pT spectrum fit :> ratio to MC spectrum fit
ke

= varied pT correction of MC

!

varied
acceptance and efficiency
corrections

measured
yields

o fitof measured pT
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First prpb(Bc)!

PbPb (1.61 nb™) + pp (302 pbY), 5.02 TeV PbPb (1.61 nb™) + pp (302 pb*?, 5.02 TeV
o o
g o cms By — (Y — prphpty, 5 of cms B: - (/Y — pruhuy,
x Centrality 0-90% x b 6<pti<i1Geve13<yH<23
2.5 s & 13<yHH<23 250 or11<pt¥<3sceva <23
L & "M <23 F
2= 2~ ’—‘
r [ ]
151 p,,=043 151
r : r L
T t L
[ § [ cent 20-90% Cent. 0-20%
0.55 0.55 p1-2 =0.57
o R B T I W N | o AT T N T W N N P
0 10 0 0 100 150 200 250 300 350 400
pHH [Gev] N par

@ Observation in PbPb: 6.80 significance
o Difference between two pt bins:
Consistent with softening of p1 spectrum
Consistent with large enhancement of integrated production due to recombination
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Comparison with heavy flavour at CMS

Open HF Hidden HF
. . + .
@ Less suppression than light ™, Band D e B, less suppressed than quarkonia
e Low/mid-p7: mass and color charge =—> # mechanisms at play than in hidden
) i . L 2
dependence + recombination effects? HF, despite similar quark content?
e High pr: universal radiative energy loss @ Pointing to more recombination than in J /4
5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pb™) 5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pbY)
3 2015, centrality 0-100% 3 2015, centrality 0-100%
[ CMS id FCMS : centralty
[ Supplementary . g.{vllnyl:l P Supplementary  prompt I/ i Ily'i(z"y“'(z"’
25F 40 B yl<24 25 W(ES) <16
[ i + Blli<24 F Y(AS) = lyl<24
2- 2017-18, centrality 0-90% 2r Y(2S) a4 <24
5 H B (visible kin.) F H 2017-18, centrality 0-90%
§ r . ® 13<ly|<23 § E . . 13<|y|<23
o 1'5; o |y|<2_y3 @ 1'5; i (vusmleBﬁm) : |y\<zé
e | N I
Ey ' &*t Lot { E 5 s
0.5[zesws0es * sates o5 F o+ 4 ¥
F .:a..'i-""i’ 4 e Beflen s
ol et . Og#\“ﬁ’\‘\\\\
1 10 107 5 10 15 20 25 30 35 40 45 50
p, [GeV] p, [GeV]
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Hadron suppression from radiative energy loss

@ Start from model of BDMPS radiative energy loss only .. pp ht, 5 TeV1
(Arleo PRL119, 2017) g i

e Extract mean hadron energy loss & = (z)(¢) ]
from high-p1 Raa data oSt pi1 3

* CMS h (JHEP 04 (2017) 039) ~

— power law (m = 5.54) k|

. pr : ) ]

o Universal shape of Raa(2%) at high pr: IRV ¥
P, (Gev)
©  Plx T o

RAA(pr,é,n):/ dX%:f(U:lrk) f’ e
0 _E 2 hi
(1 + XPT) 03|

@ Fraction (z) of parton momentum carried away by the hadron o 1
@ pp spectrum is ~ power law at high pr o e N ]
@ Rescaled quenching weight P(x = £) = £ P(e) \Pbe . > TeV;

10 0?
P, [GeV]

18 /32 G. Falmagne From plasma to complex socio-ecological systems



Raa fits to obtain &

@ pr > 8 to 13 GeV depending on system. Distinguish bin-to-bin (un)correlated errors

@ Correct for peripheral bias from Loizides and Morsch (PLB 773, 2017)
(affects centralities > 50%)

@ 62 fits (3 particles, 4 energies, 4 experiments, many centralities), all consistent with model

<o < T — )
= v v v = [ @ PbPb /5=5.02TeVh*  [Jo-100% ll10-20% mswalamtm:
> E pe {hE XeXe | Jl ! ot ™AuAu 3 &) 4w PPy =276 Tev —
g« 8 h* PbPb 5.02TeV h* PbPb 2.76TeV ; 5 44TeV v H v 0.20TeV — 14p A XeXe {5 = 5.44 TeV h No<os Jaoaose laoso% Beoaoni|
"] F H ' ' = [ W PbPb V5=5.02Tevy Hosw  M2o-20% lso-s0% [ 70-60%
B ; E : ; : = 1.2[ % POPD §=5.02TeVD  Wo10% [eo-oso Hao-e0 Mo |
E : : : : : M 3 r ’A“A“mfode:m“v“” ISJU%‘IauAD%ImT%Esmm%j
= ' ' ' ' ' = ALCE p—— |
E H H H ' ' 3 s i
SE * B H ] H -+ ATLAS = L ‘ T 1 +\
E H H H H H - = L v il b
{{ } { ' H .} } } ' H PHENIX 3 0.8~ 4 I { + |
4F Py H H {: : - r i \ ]
E H H H 1 H = L { ]
E : 1 :} { : el E osf- ills H 3
sE- : : P —= : ! r 1
£ b e Ty E ]
E ,} H {i H H : i E 5 1
= : H H 3 L ]
1= §§ H{i : {]: { } { — 021 T -
C*HHH\H\H\l\ll\\\\HH\HHIX\\HHX\\HHX\HXHHH?\*\IH\H: N ]
BREEfEASiiSEiififAiiAiiALiAiiRiiiiiiifiifiifiiififfSfAicentaly ol S —_—
S R R R R R I B LI 1 10 Ing
Sohadeddddaaddoraddddlaac i ITog a2 LILRIESII2I LT p./ng
3 PS9R889R3BRR YOSN8RSRREBRRC YABRRICCANS 33083 2°9R88S88R ™
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Energy loss Density scaling

Energy loss vs medium geometry and density

@ Salgado and Wiedemann (PrL89, 2003) model the decreasing medium

Q5

=3 equivalent transport coefficient in static medium:

. 2 (T0\®
(§) ~ do (—) (10 < L is the QGP formation time)
22—« L

@ We use a Bjorken initial density =) parametric energy loss:
chh

dN,
Gooxnox — /A o => £ x (G) 1% 2o |52
dy AJ_

@ ¢ from Rap fits

dNep

@ Multiplicity 0

density with

~ (TO\®
T

from measurements
0

@ Path length L and A, from 4 different Glauber models:
@ MC Glauber from Loizides et al., PRC97 (2018)

@ Pure hard spheres, constant density, fully analytic

@ 2 custom optical Glauber’s: hard spheres or Woods Saxons
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Densty scaling
Energy loss scales with medium geometry and density

@ Multiple systems scale!

Eai —e— PbPb 5.02TeV
o f=2—a=10229 R eresener
with fit and Glauber uncertainties 5, T AuAu0.20Tev
—» compatible with longitudinal expansion (a =1)
i
@ Knowing %}f”, can predict Raa(h™) at high pr £
in any system! £ B=1.0210.06 3
Did so for oxygen-oxygen at 7 TeV: E K'=(0.33 £0.03) fm
RMB(pr =15 GeV) ~ 0.8 13 Xfindt =0.51
00 ‘2‘0"‘4‘0‘“6‘0“‘8‘0“‘1(‘]0“‘1‘20“

o : =0y xLPray
@ No significant change using a 2-flavor (gluon and quark) Y

model instead of single parton flavor
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2
Raa(®) gives us vs...

@ The custom Glauber model provides (L)(¢) =» &(¢) = Raa(¢p) => vo at high p7!

@ We will assume L(¢) = L(1 — e cos(2¢)) with eccentricity e
g
and use the scaling Raa(u, ¢) = f(u x (ﬁ) ) with u = pr/&

3 cMS 404 ub” (5.02 TeV PbPb)
0.32[% ' Ce‘nlrali‘ty:s-;o% ' ‘ ‘ 10-‘20% ' ‘ ' 20-‘30%
al 02 ] - VASP) B
< = V{4} r
0.3 ) B o vf6) Bt
r o ; l'& * VA8) X, .
0.28— LY LN}
L L}
g LIRS IR S LI SR S
026 e i .
C s 30-40% it 40-50% la 50-60%
L 0.2ig =
024F A ! g
r ) . ~ P be |
| .- >
022 Centrality 10-20% 0‘,‘* ] ‘ ‘ ‘** ;
B <R,,>,= 0276 -..‘ i # s i ) i +
02l v, = 0.069 +- 0.002 P R, SRS 1 S . R + rrrrrrrrrrrrrrrrrrrrrrrrr
N N P A A M| Sy =s5 ettt g
-3 2 = 0 ! 2 3@ Py (GeV/c) Py (GeVic) Py (GeVic)
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=
And a scaling of v,/el!

0.6 —e— 5.02 TeV, centr. 5-10%

CMS PbPb —— 5.02 TeV, centr. 10-20%
—— 5.02 TeV, centr. 20-30%|
—+— 5.02 TeV, centr. 30-40%)
—=+— 5.02 TeV, centr. 40-50%)
—+— 5.02 TeV, centr. 50-60%|
—=— 2.76 TeV, centr. 0-10%

—=— 2.76 TeV, centr. 10-20%|
—+— 2.76 TeV, centr. 20-30%
—»— 2.76 TeV, centr. 30-40%
—=— 2.76 TeV, centr. 40-50%
—+— 2.76 TeV, centr. 50-60%|

@ Approximating v» as:

Sy A RAA(¢ = 0) - RAA(¢ = 77/2) 05
2 Raa(0) + Raa(/2)

0.4]

vo BOInf(u) B pr dRaa 03

e 2 Olnu 2 Rpp dpr

gives

0.2]

(with an expansion in €)

0.

i

—> Scaling Z(pr,&,n) = g(pr/né)
with same variable than Ry4! 0 Cl

o Consistent with CMS data at high pr

@ Simultaneous universal understanding of Raa and v, at high pr
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e
v, only from Ru, data

[} £ Q.+
>N 0.45 ; — ///q/
dInR oap P70
o Can check that % ~ /23%(;@) g
. npr 0351
with only an agnostlc fit of Raa g
03 g
£ e %A
. . . 0.25- 4
e Consistent with data (large uncertainties) : VESK
. 0.2~ 11 | —a— 5.02 Tev, centr. 5-10%
a nd £ sCa | | ng E tf —4— 5.02 TeV, centr. 10-30%
0.15 L | == 5027Tev, centr, 30-50%
E —¥— 5.02 TeV, centr. 50-60%
. 0.1~ —+— 2.76 TeV, centr. 0-10%
@ Very precise measurements of Rqa and v» of h* E S eTev, cont 10:50%
. . 0.05 —s— 2.76 TeV, centr. 30-50%)
could give an independent measurement of f... F | 276TeV.cons. 5050
i T I A A A I A T
? % 05 06 07 08 09
(Run 37) dinR,,
din P,
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Critical transitions, social tipping points, EWS

A Control parameter (¢)
1 15 2 25

@ Critical transitions / tipping points / regime shifts / bifurcations:
@ Brutal change of state with a minor perturbation

State of the system

@ (Sometimes) linked to phase transitions, criticality, hysteresis

@ Need to avoid them in ecology and climate...
and trigger them for social transformations to cooperation

Prob. density

@ How and when do they occur? == early warning signals (EWS)

Potenial

@ Some standard EWS in ecological systems

o 5 10 15 5 10 15

( C rltl C al SI OWin g d OWn) State of the system State of the system
Level of decarbonization
@ Here: use large-scale collaborative game (with humans)
to find generalizable properties of EWS Business s e
e 5 5.
© = =0
§ :: % ] g g: Decarbonized state
5“9 S 2] < =7 .
g - £° o] l
& et B S e B |
13 5 7 18 5 7 = 13 5 7 i ¢ §
Mortality Rate Stability Social tipping interventions
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Gamification and r/place

@ Real-life and experimental ecosystems are costly to monitor, measure, and control

@ “Gamified” experiments with human players can provide large amounts of data
and diverse experimental settings!

@ What if a game gave us 10,000 complex subsystems with homogeneous data to study
EWS and how cooperation emerges?

e r/place on reddit in 2022: L
- . A r Choose a color
@ 160 million pixel changes Select a pixel e for the pixel
on the canvas r'
e 3.5 days '-'.
[]

@ 10.6 million users, changing pixels at

maximum 1 pixel / 5 minutes / user \/
—> collaboration is essentiall Wait 5 minutes )

26 /32 G. Falmagne From plasma to complex socio-ecological systems

<)



Some dynamics

Heat map

# of pixel changes
10* 102

le5

5 # changes vs time

IS

N

# of pixel changes /5 min
- w

.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s] le5

time between
successive changes
from same user

number of pixel changes
o
5
:

10° 10* 10°
time interval between two pixel changes of same user

104 # changes / pixel
S
B
i 102
£
=
wn
2 10°
X
o
# 10-2
nl
10° 10! 102 103 10* 105
# changes

108

105 # changes / user
n 104
4
3
5 10°
#*

102

10!

10°

10° 10! 102 103

# pixel changes / user



Dynamics
10000 subsystems with transitions

o Atlas of > 10k “compositions” ""agez
annotated by reddit users ref image: )3‘ -
0‘]0(‘

@ Many transitions between drawings... identified

with a threshold on # pixels differing from a
.. . . . ., 0.8
sliding-window-averaged image (4 a preceding stable 3
period) Zos
% sudden change
g 0.4 of image
E 0.2
0.0 —4
60 65 70 75 80
T Time (hrs)

stable period
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Dynamics
10000 subsystems with transitions

@ Atlas of > 10k “compositions” :j | B ZQW
annotated by reddit users - Jl L b

frge_pixdiff,inst_vs_swref

users_sw_norm

@ Many transitions between drawings... identified

with a threshold on # pixels differing from a g Pl e
sliding-window-averaged image (+ a preceding stable - N L | TZM
period) 7 " oo M
¥ o0 transition
@ 14 time-dependent :M T M\ IE /
variables describing .[7  wwmeren ] pemrenen
a composition N J/\J\\,_/

100

ac_atthtk_changes imul_atgack timefrac
08 S i !
075
06
050
04
02 025

150000 200000 250000 300000 150000 200000 250000 300000
e

Time [s
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Warning signals with XGBoost

14 variables

memory of past 6 hours
(8-11 recorded periods)

1 desired output:
log(earlyness)
or
earlyness < X hours

@ At each time point, we intend to:

@ Use only past 6 hours
on all 14 variables ...

1event =

1 timestep

@ ... to predict how close a future I
transition might be — named “earliness” Must:

- not be in transition
- follow a >3h stable period

@ Use XGBoost: gradient-boosted decision trees zml
) .7M events

é 142 Input features from 11k compositions

1 output (earliness or ‘earliness < X") ™

27M time pomts Train gradient-boosted decision \“A

trees | Evaluate earlyness prediction
(XGBoost v1.7.5). on test sample
Use parameters favoring small earlyness.
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=078 ezl
Learning early warning signals

@ We obtain predictive power for coming transitions,

up to a few hours before they arrive!

@ Predict half of “earliness < 20 minutes’ events

with only 0.5% background efficiency!

@ Can use SHAPIley additive values to determine
what variables bring the most predictive power

earlyness true positive false positive
condition rate rate

< 20 min 50% 0.48%
<1 hour 50% 4.2%

< 6 hours 50% 15%

G. Falmagne

"
)

=
o
=

o
2

100 + predicted earliness [s]

not predictable

I 4 o
IS EY Y

true positive rate

o
N

oy
0.0 0.1 0.2 0.3
false positive rate
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Observed organizational structure to build compositions:

-~ Twitch streamer with an “army” of followers /
- More horizontal through subreddit/discord forums sT
<«— Bottom-up only through indirect interactions on the canvas?

- "Democratic” with emerging hierarchy on forums? Or mix?

What shape of organizational networks are best
to promote cooperation / solve the prisoner’s dilemma?

—=

Ideas: Polycentric governance Cooperate  Defect
Top-down/hierarchical Multi-layered networks cocinl
Spatial homogeneity (breaking echo chambers) Cooperate 200|a 5
Self-organization vs top-down policies 0 ti'mum !
< ash

Possible methods:  Spread of simple drawings
Network of users in external communication Defect 3 1
Use NLP on subreddits equilibrium
Bottom-up/distributed Currently circulating a survey to players




Thank you!

PbPb (1.61 nb) + pp (302 pb}), 5,02 Tev s R @ o pey—— e 502 Tev, centr 5-10%
g F + . — el ~ [ —— 5.02 TeV, centr. 10-20%|
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