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Introduction Between one and many agents

Between physics and ecology
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Introduction More is different

Elementary brick or many-agents system?

QGP links:

The world of particle physics:
why? more elementary components

and that of statistical physics:
why? system perspective, many agents

More is different,
Phil Anderson, 1972

Emergent phenomena: interactions between many simple agents (i.e. complex systems)
lead to original system properties, far from those of a single agent.
Example: phase transitions!
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Introduction More is different

Plasma and collectivity
QGP = a“state of matter”, a“medium” ...
as can be ensembles of living beings

Continuity of approaches from “elementary” particles
(first principles) to their collective behaviour:

agent-based models

spin models

statistical physics

dynamical models (diff. equations)

scaling laws

networks

evolutionary game theory

Historically:

thermodynamics then particle physics

bird biology then flocks
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Introduction Sociophysics

Sociophysics, scaling laws, networks

Sociophysics = humans as particles?

Interdisciplinarity = complementary approach, not replacement

Example success stories with complex systems
(including from Santa Fe Institute):

Scaling laws / allometry (urbanization,
animal morphology, businesses ...)

Networks: influence of structure on dynamics
(Internet, disease and opinion propagation ...)
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Bc Motivations

Effects of the QGP on Bc mesons

Dissociation: screening of heavy-quark potential
Bc : binding energy between J/ψ and Υ(1S)

Recombination: many cc̄ produced in PbPb + small σ(Bc) in pp
large enhancement at pT ≲ mBc?

Energy loss: universal at high pT ,
mass and color charge dependence at low-mid pT

Hard Processes

c̄
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Energy loss
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Bc Motivations

Challenges for first observation of Bc in heavy ions

Semi-leptonic channel B+
c → (J/ψ → µµ)µ+νµ

Signal = a slightly displaced vertex of three muons,
with an opposite-sign pair in the J/ψ mass peak region

Partially reconstructed
use visible trimuon kinematics

and trimuon mass ∈ [3.2, 6.3] GeV
Need good understanding of backgrounds

mJ/ψ +mµ mBc
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Template fit
Fit

Fit method
variations

Acceptance and
Efficiency

Train BDT

Selection

PreselectionRun oniatrees

Input/Output

a priori
normalisations

 First step

 Second step

ancillary   

MC pT correction
from measurement

J/Ψ choice 
weighting

Simple
corrected yields

Signal
Yields

Working
tree

BDT-dependent

Train BDT2 Template fit Fit method
variations

BDT distribution
check+reweight

MC pT correction
from 2nd-step
measurement

2nd-step
corrected yields

Single muon:
acceptance cuts

+ selection

Acc&Eff
nominal + systematics

(toy pT variations)
cross-sections

RPbPb

3rd-step
corrected yields

Fiducial cuts
pT binning

Acc&Eff
maps

Statistical test
+ interpretation

tag-and-probe
scale factors

Scale factor
variations

Nuisance parameters:
normalisation modifiers

shape modifiers

BDT/mass 
decorrelation

shape
regularisation

Acc&Eff
corrections

(corrected MC)

Acc&Eff
corrections

(simple)

bin-to-bin 
correlations

Re-run with
centrality



Bc Analysis strategy

Analysis strategy

Template fitSelection

second step

pT correction of MC
from measurement

BDT
Acceptance

and efficiency
corrections

Final 
Acc&Eff

cross-sections
RPbPb

Selection + BDT training

Trimuon mass templates
for background and signal

Template fit of trimuon mass

Correct for acceptance and efficiency
pT spectrum correction of MC

Second step of analysis, using corrected MC

Result: RPbPb(Bc) in two pT or centrality bins

Note: Blinding 3/4 of PbPb data signal region until a late stage, to limit analyser bias.
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Bc Selection + BDT

Selection and BDT

CMS data from 2018 pp and PbPb,
dimuon trigger (fired by ≥ 2 muons)

Weighting strategy for the 1 or 2 dimuons
in the mµµ signal or sidebands regions

Selection variables: vertexing, displacement, angle
topology, pT imbalance, ...

BDT trained on 8 variables.
Not used for selection: fit in 3 BDT ranges.
Separate training for 2 analysis bins.
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Bc Backgrounds

Background shapes

J/ψ − µ from ̸= vertices use rotated J/ψ sample (data-driven)

J/ψ and (mostly fake)
muon from same
B decay: from MC

∼ the only free bkg
normalisation in the fit

pp pT -integrated fit (background-enriched BDT bin)

Fake J/ψ
dimuon mass

sidebands
data-derived

normalisation
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Bc Fit

Template fit (pp, pT -integrated)

Likelihood fit, simultaneous over 3 BDT bins + 2 pT or centrality bins

Nuisance parameters to account for background uncertainties

pp, centrality- and pT -integrated
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Bc Fit

Template fit (PbPb, pT -integrated)

Likelihood fit, simultaneous over 3 BDT bins + 2 pT or centrality bins

Nuisance parameters to account for background uncertainties

PbPb, centrality- and pT -integrated
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Bc Acceptance and efficiency

Acceptance and efficiency: iterative procedure

Wide bins α× ε is sensitive to the assumed pT spectrum shape

Correct with our measurement the pT spectrum of MC

Re-run the whole analysis with corrected MC

Uncertainty:

fit of measured pT

varied 
yields varied pT spectrum fit ratio to MC spectrum fit

= varied pT correction of MC

varied 
acceptance and efficiency 

corrections
measured 

yields
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Bc Results

First RPbPb(Bc)!
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Bc Results

Comparison with heavy flavour at CMS
Open HF

Less suppression than light h±, B and D

Low/mid-pT : mass and color charge
dependence + recombination effects?

High pT : universal radiative energy loss

1 10 210
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3

A
A

R

)-1) + pp (27-302 pb-15.02 TeV PbPb (0.37-1.6 nb

CMS
 Supplementary

2015, centrality 0-100%

2017-18, centrality 0-90%

 (visible kin.)
+
cB

| < 1η, |
+h

, |y| < 10D
, |y| < 2.4

+B
, |y| < 2.40

sB

1.3 < |y| < 2.3

|y| < 2.3 
 and lumi.AAT

uncert. (2015)

Hidden HF

Bc less suppressed than quarkonia
̸= mechanisms at play than in hidden
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Pointing to more recombination than in J/ψ
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Energy loss

Hadron suppression from radiative energy loss

Start from model of BDMPS radiative energy loss only
(Arleo PRL119, 2017)

Extract mean hadron energy loss ε̄ = ⟨z⟩⟨ε⟩
from high-pT RAA data

Universal shape of RAA(
pT
n ε̄ ) at high pT :

RAA(pT, ε̄, n) =

∫ ∞

0
dx

P̄(x)(
1 + x ε̄

pT

)n ≃ f
(
u =

pT
n ε̄

)

Fraction ⟨z⟩ of parton momentum carried away by the hadron

pp spectrum is ∼ power law at high pT

Rescaled quenching weight P̄(x = ε
ε̄
) = ε̄P(ε)
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Energy loss Fits

RAA fits to obtain ε̄

pT > 8 to 13 GeV depending on system. Distinguish bin-to-bin (un)correlated errors

Correct for peripheral bias from Loizides and Morsch (PLB 773, 2017)

(affects centralities > 50%)

62 fits (3 particles, 4 energies, 4 experiments, many centralities), all consistent with model
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Energy loss Density scaling

Energy loss vs medium geometry and density

Salgado and Wiedemann (PRL89, 2003) model the decreasing medium density with

q̂ = q̂0
(τ0
τ

)α
equivalent transport coefficient in static medium:

⟨q̂⟩ ≃ 2

2− α
q̂0

(τ0
L

)α
(τ0 ≪ L is the QGP formation time)

We use a Bjorken initial density parametric energy loss:

q̂0 ∝ n ∝ dNch

dy
/A⊥τ0 ε ∝ ⟨q̂⟩L2 ∝

dNch
dy

A⊥
L2−α ∝ Lβ ̸=2

ε from RAA fits

Multiplicity dNch

dy

∣∣∣
y=0

from measurements

Path length L and A⊥ from 4 different Glauber models:
MC Glauber from Loizides et al., PRC97 (2018)

Pure hard spheres, constant density, fully analytic

2 custom optical Glauber’s: hard spheres or Woods Saxons
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Energy loss Density scaling

Energy loss scales with medium geometry and density

Multiple systems scale!

β = 2− α = 1.02+0.09
−0.06

with fit and Glauber uncertainties
compatible with longitudinal expansion (α = 1)

Knowing dNch
dy , can predict RAA(h

±) at high pT
in any system!
Did so for oxygen-oxygen at 7 TeV:

RMB
AA (pT = 15 GeV) ≃ 0.8

No significant change using a 2-flavor (gluon and quark)

model instead of single parton flavor
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Energy loss v2

RAA(ϕ) gives us v2...

The custom Glauber model provides ⟨L⟩(ϕ) ε̄(ϕ) RAA(ϕ) v2 at high pT !

We will assume L(ϕ) = L(1− e cos(2ϕ)) with eccentricity e

and use the scaling RAA(u, ϕ) = f (u ×
(

L
L(ϕ)

)β
) with u = pT/ε̄

3− 2− 1− 0 1 2 3
φ
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T
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Energy loss v2

And a scaling of v2/e!

Approximating v2 as:

2v2 ≈
RAA(ϕ = 0)− RAA(ϕ = π/2)

RAA(0) + RAA(π/2)

gives
v2
e

≃ β

2

∂ ln f (u)

∂ ln u
≃ β

2

pT
RAA

dRAA

dpT

(with an expansion in e)

Scaling v2
e (pT, ε̄, n) = g(pT/n ε̄)

with same variable than RAA!

Consistent with CMS data at high pT
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Energy loss v2

v2 only from RAA data

Can check that v2
e ≃ β

2
∂ lnRAA(pT)
∂ ln pT

with only an agnostic fit of RAA

Consistent with data (large uncertainties)
and ε scaling

Very precise measurements of RAA and v2 of h
±

could give an independent measurement of β...
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Critical transitions

Critical transitions, social tipping points, EWS

Critical transitions / tipping points / regime shifts / bifurcations:

Brutal change of state with a minor perturbation

(Sometimes) linked to phase transitions, criticality, hysteresis

Need to avoid them in ecology and climate...
and trigger them for social transformations to cooperation

How and when do they occur? early warning signals (EWS)

Some standard EWS in ecological systems
(critical slowing down)

Here: use large-scale collaborative game (with humans)
to find generalizable properties of EWS

25 / 32 G. Falmagne From plasma to complex socio-ecological systems



r/place

Gamification and r/place

Real-life and experimental ecosystems are costly to monitor, measure, and control

“Gamified” experiments with human players can provide large amounts of data
and diverse experimental settings!

What if a game gave us 10,000 complex subsystems with homogeneous data to study
EWS and how cooperation emerges?

r/place on reddit in 2022:

160 million pixel changes

3.5 days

10.6 million users, changing pixels at
maximum 1 pixel / 5 minutes / user

collaboration is essential!
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r/place Dynamics

10000 subsystems with transitions

Atlas of > 10k “compositions”
annotated by reddit users

Many transitions between drawings... identified
with a threshold on # pixels differing from a
sliding-window-averaged image (+ a preceding stable
period)
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r/place Dynamics

10000 subsystems with transitions

Atlas of > 10k “compositions”
annotated by reddit users

Many transitions between drawings... identified
with a threshold on # pixels differing from a
sliding-window-averaged image (+ a preceding stable
period)

Time [s]

14 time-dependent
variables describing
a composition
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r/place XGBoost

Warning signals with XGBoost

At each time point, we intend to:

Use only past 6 hours
on all 14 variables ...

... to predict how close a future
transition might be – named “earliness”

Use XGBoost: gradient-boosted decision trees
142 input features
1 output (earliness or ‘earliness < X ’)
2.7M time points
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r/place EWS results

Learning early warning signals

We obtain predictive power for coming transitions,
up to a few hours before they arrive!

Predict half of “earliness < 20 minutes” events
with only 0.5% background efficiency!

Can use SHAPley additive values to determine
what variables bring the most predictive power
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Thank you

Thank you!
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