Collective phenomena and critical transitions from plasma to complex socio-ecological systems

Guillaume Falmagne

High Meadows Environmental Institute, Princeton University

High Meadows Environmental Institute

GdR QCD General Assembly September 27th, 2023

Between physics and ecology

• PhD on QGP: B_c meson in PbPb, high- p_T radiative energy loss

• Postdoc: critical transitions in socio-ecological complex systems

From plasma to complex socio-ecological systems

Between physics and ecology

- PhD on QGP: B_c meson in PbPb, high- p_T radiative energy loss **???**
- Postdoc: critical transitions in socio-ecological complex systems

G. Falmagne From p

From plasma to complex socio-ecological systems

Change in annual average global temperature from pre-industrial levels (1850-1900) in degrees C

Conserved Model Conserved Conser

Elementary brick or many-agents system?

- QGP links:
 - The world of particle physics:

why?
→ more elementary components

and that of statistical physics:
 why? → system perspective, many agents

More Is Different

• More is different,

Phil Anderson, 1972

Broken symmetry and the nature of the hierarchical structure of science.

x	Y
solid state or many-body physics chemistry molecular biology cell biology	elementary particle physics many-body physics chemistry molecular biology
•	•
•	•
psychology	physiology
social sciences	psychology
But this hierarch	ny does not imply
that science X is "	ust applied Y." At

• Emergent phenomena: interactions between many simple agents (*i.e.* complex systems) lead to original system properties, far from those of a single agent. Example: phase transitions!

More is different

Plasma and collectivity

- QGP = a "state of matter", a "medium" ... as can be ensembles of living beings
- Continuity of approaches from "elementary" particles (*first principles*) to their collective behaviour:
 - agent-based models
 - spin models
 - statistical physics
 - dynamical models (diff. equations)
 - scaling laws
 - networks
 - evolutionary game theory
- Historically:
 - thermodynamics then particle physics
 - bird biology then flocks

Sociophysics

Sociophysics, scaling laws, networks

- Sociophysics = humans as particles?
- Interdisciplinarity = complementary approach, not replacement
- Example success stories with complex systems (including from Santa Fe Institute):

G. Falmagne

Networks: influence of structure on dynamics (Internet, disease and opinion propagation ...)

SCALE Schurzer und the second second

6/32

From plasma to complex socio

Effects of the QGP on B_c mesons

- Dissociation: screening of heavy-quark potential
 - B_c : binding energy between J/ψ and $\Upsilon(1S)$

Effects of the QGP on B_c mesons

- Dissociation: screening of heavy-quark potential B_c : binding energy between J/ψ and $\Upsilon(1S)$
- Recombination: many $c\bar{c}$ produced in PbPb + small $\sigma(B_c)$ in pp \rightarrow large enhancement at $p_T \leq m_{B_c}$?

Effects of the QGP on B_c mesons

- Dissociation: screening of heavy-quark potential B_c : binding energy between J/ψ and $\Upsilon(1S)$
- Recombination: many $c\bar{c}$ produced in PbPb + small $\sigma(B_c)$ in pp \rightarrow large enhancement at $p_T \leq m_{B_c}$?
- Energy loss: universal at high p_T, mass and color charge dependence at low-mid p_T

Challenges for first observation of B_c in heavy ions

R.

- Semi-leptonic channel $B_c^+
 ightarrow (J/\psi
 ightarrow \mu \, \mu) \, \mu^+
 u_\mu$
 - Signal = a slightly displaced vertex of three muons, with an opposite-sign pair in the J/ψ mass peak region

Motivations

Challenges for first observation of B_c in heavy ions

- Semi-leptonic channel $B_c^+
 ightarrow (J/\psi
 ightarrow \mu \, \mu) \, \mu^+
 u_\mu$
 - Signal = a slightly displaced vertex of three muons, with an opposite-sign pair in the J/ψ mass peak region
 - Partially reconstructed
 → use visible trimuon kinematics and trimuon mass ∈ [3.2, 6.3] GeV

Analysis strategy

- Selection + BDT training
- Trimuon mass templates for background and signal
- Template fit of trimuon mass

Be

- Selection + BDT training
- Trimuon mass templates for background and signal
- Template fit of trimuon mass
- Correct for acceptance and efficiency $\rightarrow p_T$ spectrum correction of MC
- Second step of analysis, using corrected MC

B-

- Selection + BDT training
- Trimuon mass templates for background and signal
- Template fit of trimuon mass
- Correct for acceptance and efficiency $\rightarrow p_T$ spectrum correction of MC
- Second step of analysis, using corrected MC
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins

Note: Blinding 3/4 of PbPb data signal region until a late stage, to limit analyser bias.

Selection and BDT

R

- CMS data from 2018 pp and PbPb, dimuon trigger (fired by ≥ 2 muons)
- Weighting strategy for the 1 or 2 dimuons in the $m_{\mu\mu}$ signal or sidebands regions
- Selection variables: vertexing, displacement, angle topology, p_T imbalance, ...
- BDT trained on 8 variables.
 Not used for selection: fit in 3 BDT ranges.
 Separate training for 2 analysis bins.

Template fit (pp, p_T -integrated)

B_c Eit

- Likelihood fit, simultaneous over 3 BDT bins + 2 p_T or centrality bins
- Nuisance parameters to account for background uncertainties

pp, centrality- and p_T -integrated

13 / 32

Template fit (PbPb, p_T -integrated)

B_c Eit

- Likelihood fit, simultaneous over 3 BDT bins $+ 2 p_T$ or centrality bins
- Nuisance parameters to account for background uncertainties

Acceptance and efficiency: iterative procedure

R.

- Wide bins $\rightarrow \alpha \times \varepsilon$ is sensitive to the assumed p_T spectrum shape
- Correct with our measurement the p_T spectrum of MC
- Re-run the whole analysis with corrected MC
- Uncertainty:

B_c Results

First $R_{\rm PbPb}(B_c)!$

- Observation in PbPb: 6.8σ significance
- Difference between two p_T bins:

Consistent with softening of p_T spectrum

Consistent with large enhancement of integrated production due to recombination

Comparison with heavy flavour at CMS

Open HF

- Less suppression than light h^{\pm} , B and D
- Low/mid-p_T: mass and color charge dependence + recombination effects?
- High p_T : universal radiative energy loss

Hidden HF

- B_c less suppressed than quarkonia
 - $\rightarrow \neq$ mechanisms at play than in hidden HF, despite similar quark content?
- $\bullet\,$ Pointing to more recombination than in J/ψ

Hadron suppression from radiative energy loss

- Start from model of BDMPS radiative energy loss *only* (Arleo PRL119, 2017)
- Extract mean hadron energy loss $\bar{\varepsilon} = \langle z \rangle \langle \varepsilon \rangle$ from high- $p_T R_{AA}$ data
- Universal shape of $R_{AA}(\frac{p_{\rm T}}{n\bar{\varepsilon}})$ at high p_T :

$$R_{AA}(p_{\mathrm{T}},\bar{\varepsilon},n) = \int_{0}^{\infty} \mathrm{d}x \frac{\bar{P}(x)}{\left(1+x\frac{\bar{\varepsilon}}{p_{\mathrm{T}}}\right)^{n}} \simeq f\left(u = \frac{p_{\mathrm{T}}}{n\,\bar{\varepsilon}}\right)$$

- Fraction $\langle z \rangle$ of parton momentum carried away by the hadron
- pp spectrum is \sim power law at high p_{T}
- Rescaled quenching weight $\bar{P}(x = \frac{\varepsilon}{\bar{\varepsilon}}) = \bar{\varepsilon} P(\varepsilon)$

R_{AA} fits to obtain $\bar{\varepsilon}$

- $\bullet~p_{\rm T}>8$ to 13 GeV depending on system. Distinguish bin-to-bin (un)correlated errors
- Correct for peripheral bias from Loizides and Morsch (PLB 773, 2017) (affects centralities > 50%)
- 62 fits (3 particles, 4 energies, 4 experiments, many centralities), all consistent with model

Energy loss vs medium geometry and density

• Salgado and Wiedemann (PRL89, 2003) model the decreasing medium density with

→ equivalent transport coefficient in static medium:

$$\langle \hat{q} \rangle \simeq rac{2}{2-lpha} \hat{q}_0 \left(rac{ au_0}{L}
ight)^lpha \qquad (au_0 \ll L ext{ is the QGP formation time})$$

• We use a Bjorken initial density \rightarrow parametric energy loss:

$$\hat{q}_0 \propto n \propto \frac{dN_{ch}}{dy} / A_\perp \tau_0 \longrightarrow \varepsilon \propto \langle \hat{q} \rangle L^2 \propto \frac{\frac{dN_{ch}}{dy}}{A_\perp} L^{2-\alpha} \propto L^{\beta \neq 2}$$

- Multiplicity $\frac{dN_{ch}}{dy}\Big|_{y=0}$ from measurements
- Path length L and A_{\perp} from 4 different Glauber models:
 - MC Glauber from Loizides et al., PRC97 (2018)
 - Pure hard spheres, constant density, fully analytic
 - 2 custom optical Glauber's: hard spheres or Woods Saxons

 $\hat{q} = \hat{q}_0 \left(\frac{\tau_0}{\tau}\right)^{\alpha}$

Energy loss scales with medium geometry and density

- Multiple systems scale!
- β = 2 − α = 1.02^{+0.09}_{-0.06} with fit and Glauber uncertainties
 → compatible with longitudinal expansion (α = 1)

• No significant change using a 2-flavor (gluon and quark) model instead of single parton flavor

$R_{AA}(\phi)$ gives us $v_2...$

- The custom Glauber model provides $\langle L \rangle(\phi) \rightarrow \bar{\varepsilon}(\phi) \rightarrow R_{AA}(\phi) \rightarrow v_2$ at high $p_T!$
- We will assume $L(\phi) = L(1 e\cos(2\phi))$ with eccentricity eand use the scaling $R_{AA}(u, \phi) = f(u \times \left(\frac{L}{L(\phi)}\right)^{\beta})$ with $u = p_{T}/\bar{\varepsilon}$

And a scaling of $v_2/e!$

• Approximating v₂ as:

$$2v_2 pprox rac{R_{AA}(\phi=0)-R_{AA}(\phi=\pi/2)}{R_{AA}(0)+R_{AA}(\pi/2)}$$

gives

$$\frac{v_2}{e} \simeq \frac{\beta}{2} \frac{\partial \ln f(u)}{\partial \ln u} \simeq \frac{\beta}{2} \frac{p_{\rm T}}{R_{AA}} \frac{\mathrm{d}R_{AA}}{\mathrm{d}p_{\rm T}}$$

(with an expansion in e)

→ Scaling $\frac{v_2}{e}(p_T, \bar{e}, n) = g(p_T/n\bar{e})$ with same variable than R_{AA} !

- Consistent with CMS data at high p_T
- Simultaneous universal understanding of R_{AA} and v_2 at high $p_{\rm T}$

v_2 only from R_{AA} data

- Can check that $\frac{\nu_2}{e} \simeq \frac{\beta}{2} \frac{\partial \ln R_{AA}(p_{\rm T})}{\partial \ln p_{\rm T}}$ with only an agnostic fit of R_{AA}
- Consistent with data (large uncertainties) and ε scaling
- Very precise measurements of R_{AA} and v₂ of h[±] could give an independent measurement of β... (Run 3?)

Critical transitions

Critical transitions, social tipping points, EWS

- Critical transitions / tipping points / regime shifts / bifurcations:
 - Brutal change of state with a minor perturbation
 - (Sometimes) linked to phase transitions, criticality, hysteresis
 - Need to avoid them in ecology and climate... and trigger them for social transformations to cooperation
- How and when do they occur? \rightarrow early warning signals (EWS)
 - Some standard EWS in ecological systems (critical slowing down)
 - Here: use large-scale collaborative game (with humans) to find generalizable properties of EWS

G. Falmagne From plasma to

From plasma to complex socio-ecological systems

Gamification and r/place

- Real-life and experimental ecosystems are costly to monitor, measure, and control
- "Gamified" experiments with human players can provide large amounts of data and diverse experimental settings!

G. Falmagne

- What if a game gave us 10,000 complex subsystems with homogeneous data to study EWS and how cooperation emerges?
- **r/place** on reddit in 2022:
 - 160 million pixel changes
 - 3.5 days
 - 10.6 million users, changing pixels at maximum 1 pixel / 5 minutes / user
 - → collaboration is essential!

Dvnamics

10000 subsystems with transitions

- Atlas of > 10k "compositions" annotated by reddit users
- Many transitions between drawings... identified with a threshold on # pixels differing from a sliding-window-averaged image (+ a preceding stable)period)

Dynamics

10000 subsystems with transitions

- Atlas of > 10k "compositions" annotated by reddit users
- Many transitions between drawings... identified with a threshold on # pixels differing from a sliding-window-averaged image (+ a preceding stable period)

• 14 time-dependent variables describing a composition

XGBoost

Warning signals with XGBoost

G. Falmagne

- At each time point, we intend to:
 - Use only past 6 hours on all 14 variables ...
 - ... to predict how close a future transition might be - named "earliness"
- Use XGBoost: gradient-boosted decision trees
 - \rightarrow 142 input features 1 output (earliness or 'earliness < X') 2.7M time points

Learning early warning signals

- We obtain predictive power for coming transitions, up to a few hours before they arrive!
- Predict half of "earliness < 20 minutes" events with only 0.5% background efficiency!
- Can use SHAPley additive values to determine what variables bring the most predictive power

earlyness condition	true positive rate	false positive rate
< 20 min	50%	0.48%
< 1 hour	50%	4.2%
< 6 hours	50%	15%

Related project: structure and emergence of cooperation

Observed organizational structure to build compositions:

- Twitch streamer with an "army" of followers
- More horizontal through subreddit/discord forums
 - Bottom-up only through indirect interactions on the canvas?
- "Democratic" with emerging hierarchy on forums? Or mix?

Ideas[.]

Top-down/hierarchical

Bottom-up/distributed

What shape of organizational networks are best to promote **cooperation / solve the prisoner's dilemma**?

Polycentric governance Multi-layered networks Spatial **homogeneity** (breaking echo chambers) Self-organization vs top-down policies

Possible methods: Spread of simple drawings Network of users in external communication Use NLP on subreddits Currently circulating a survey to players

Thank you

Thank you!

From plasma to complex socio-ecological system