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Layers of the Earth / Seismology
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P-waves
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Earthquakes, Seismometers, 3D Earth Structures

100 km 350 km 600 km 1,‘I 00 km 1,500 km 2,100 km 2,850 km

We record and locate thousands
of earthquakes each year

~_02/2017

Global seismic networks 3D Earth structures from tomographic models
provide open high-quality data Rifsemna & Lekic, AREPS (2020)



Earthquakes, Seismometers, 3D Earth Structures

High-shear wavespeed Low-shear wavespeed

We record and locate thousands
of earthquakes each year

Global seismic networks
provide open high-quality data

1,500 km

2,800 km
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3D Earth structures from tomographic models
Ritsema & Lekic, AREPS (2020)



Earthquakes, Seismometers, 3D Earth Structures

We record and locate thousands
of earthquakes each year

faster than slower than

2,800 km
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Global seismic networks 3D Earth structures from tomographic models
provide open high-quality data Ritsema & Lekic, AREPS (2020)



Large-scale Structures [~5000 km]: fast anomaly

1,000-1,600 km 1,600-2,200 km 2,200-2,800 km

dV,/V,

dVe/Ve

Age (My)

I a— Dominantly seen
Young et al, Nature (2019) near circum-pacific
Subducted slabs in P- and S-wave models subduction zones
Excellent correspondence between 2,800 km
reconstructed locations of subduction L
zones and fast regions in lower mantle

1 2 3 4 5 6 7 8 9 1011 12 13 14

-Tomographic models
reveal slabs of oceanic
lithosphere subducting
through the mantle

-Consistent between P-
and S-wave models

-Well explained by past
200 Myr subduction
history

-When did the subduction
begin? How far back to
go? 130Ma? 240Ma?



Large-scale Structures [~*5000 km]: slow anomaly

Anomaly

Iceland =
Anomaly

Cottaar & Lekic, GJI (2016)
Large low shear velocity provinces
(~9% of whole mantle mass)

Excess density, dlnp (%)

Dense but seismically slow regions
Lau et al, Nature (2017)

2,800 km

Found beneath
Pacific and Africa

[T =
1 2 3 4 5 6 7 8 9 1011 12 13 14

Extend no more
than ~900 km
above the CMB

-Traditionally viewed as
mantle upwelling regions,
“Super plumes”™:
isochemical?

-More recently observed in
P-wave models / sharp
edges support a
compositional heterogeneity
(~ +/- 3-5% out of ~2%)

-Geophysical constraints
(tidal response, normal
modes, dynamic topography,
CMB ellipticity, gravity)
prefer denser material (~1%)

at the base (~200 km)
(e.qg., Ishii & Tromp 1999;
Trampert et al., 2004; Lau et al.,
2017; Richards et al., 2023)



Large-scale Structures [~5000 km]: complexities

Samoa

Galapagos

Seismic
anomalies

the mantle

French & Romanowicz, Science (2015)
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Maguire et al., GRL (2017)

and resolution
at the base of

CMB topographic patterns with
varying lateral wavelengths

Colombi et al., GJI (2014)

-Limited resolution:
regularizations in
tomographic inversions
can generate blurred
images and itis a
challenge to robustly
image structures
smaller than ~1000 km
scale

-Complexities with
other existing
structures: difficult to
decouple mantle
heterogeneity vs. CMB
topography



Large-scale Structures [~5000 km]: complexities
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-Probing detailed morphology
and small-scale intra-LLSVP
structures are needed

-Gap within African LLSVP:
signature of individual plumes or
piles boundary undulation?

-Often, such studies find
stronger overall dVs drops
compared to global tomography

LLSVP LLSVP
dynamically dynamically
unstable stable
unstable stable
NS

Wolf et al. (2015)



Holy Grail in Seismology: understading coda wiggles

I




Meso-scale structures [~1000 km]: mega-ULV/Zs

a 7 Hawail -Unresolved by tomographic inversions
F so largely inferred from distortions in

e the seismic wavefield (except for Perm
' / Kamchatka)

-Reduced S-wave speed up to 40%;

Previous Observations
Kim et al., (2020)

[] sun et al., (2019)

[] zhao et al., (2017)

e P-wave constraints are relatively less
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-Mega-ULVZs are only discovered

Krier, et al., JGR (2021) Jenkins et al., EPSL (2021)
lceland below a few hotspot volcanoes

il 0.08 (e.g., Cottarr & Romanowicz 2012; Thorne et al.,
g | 2013; Yuan & Romanowicz, 2017; Kim et al.,
= #7 2020; Cottar et al., 2022)
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Kim et al., Science (2020) Yuan & Romanowicz, Science (2017)

-Origin and composition of these
structures are largely unknown
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Geochemical Characteristics of Mega-ULVis
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Normal Tungsten & high 3He/*He
suggests relatively un-degassed
material that is associated with LLVPs mega-ULVZs

Williams et al., Science (2019)
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Negative correlation of Tungsten
vs. 3Hel*He is seen at nearly all

Mundl-Petermeier et al., Geochimica et
Cosmochimica Acta (2020)

Some isotope system
provides an important
temporal constraint for
primordial geochemical
reservoirs

Mega-ULVZs may host
primitive geochemical
signatures?

If mega-ULVZs are
associated with partial
melt, this will facilitate
core-mantle isotope
equilibration



One of a kind: Hawaiian mega-ULVZ
A joint analysis using Pdiff and Sdiff datasets
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Kim et al., AGU meeting (2021)
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P-wave amplitudes being much
weaker (dinVs/dinVp = 2-4) but
showing similar spatial pattern
compared to the S-wave
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Observed dInVs/dInVp is
close to what we would
expect for partially molten
materials at the CMB



One of a kind: Hawaiian mega-ULVZ

A joint analysis using Pdiff and Sdiff datasets km-scale structures
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eso-scale structures [~1000 km]: challenges
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-Tradeoffs exist among physical parameters (velocity,
density, size, shape, etc.) in waveform modeling
-Modeling with other seismic phases also suffer from
non-uniqueness



Small-scale Structures [~10-100 km]: ULV/s

A global assessment of ULVZ studies until 2018 Some ULVZs may be associated with slabs
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= ULVZ detected
= no ULVZ detected

-The total percentage of CMB area sampled by past
ULVZ studies since 2018 is 17.1%

-Shows no spatial correlation between observed ULVZ
locations and large-scale structures / hotspot volcanoes
-Studies using reflected / converted seismic data
advocate a density increase

Webber et al.,
Science (2011)

Russell et al., GRL (in revision)

W .
Samuelet al., (in revision)



Small-scale Structures [~10-100 km]: scc:’r’rrrs
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Global CMB scatterers from core-traversing phases

“pervasive postcursors”
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related to widespread
scattering ?
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Key Takeaways

-Lower mantle hosts anomalous structures in various scales:
-LLSVPs [5000 km]
-Mega ULVZs [1000 km]
-ULVZs [100 km]
-CMB topography, unknown scatterers

Garnero et al., Nat. Geo. (2017)

-These structures are intimately tied to the fate of subducted slabs, origin of plumes, and nature
of primitive geochemical reservoirs with many open questions to be answered

-Robustly imaging the lower mantle structure requires different types of seismic waves and
multiple approaches

-Much of the lowermost mantle / CMB region remains unexplored (e.g., physical coverage
illuminated by seismic waves, anisotropy, attenuation, etc.)

-Seismologists continue to work together with the larger terrestrial / planetary science community
to uncover various mysteries of the deep planetary interior structures and dynamics
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