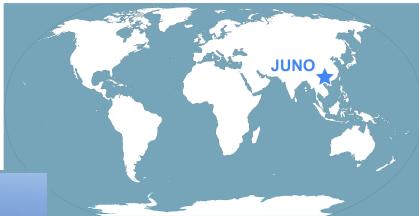


JUNO's PERSPECTIVE FOR GEONEUTRINOS

Multi-Messenger Tomography of Earth July 4-7, 2023

Yury Malyshkin^{1,2} on behalf of the JUNO collaboration

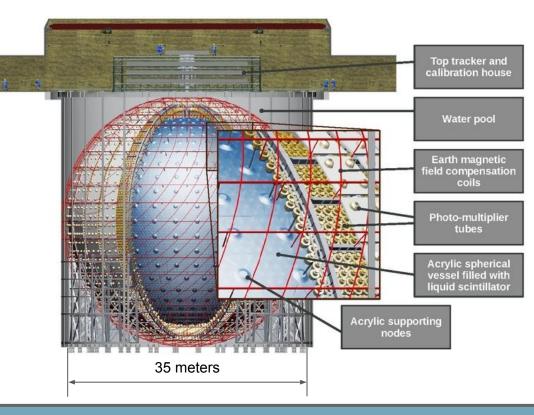
1. GSI Helmholtzzentrum für Schwerionenforschung


2. Forschungzentrum Jülich

Jiangmen Underground Neutrino Observatory

- Located near Kaiping, Jiangmen in Guangdong province in Southern China
- Designed to measure reactor neutrinos from two NPP at 52.5 km distance (~700 m deep)

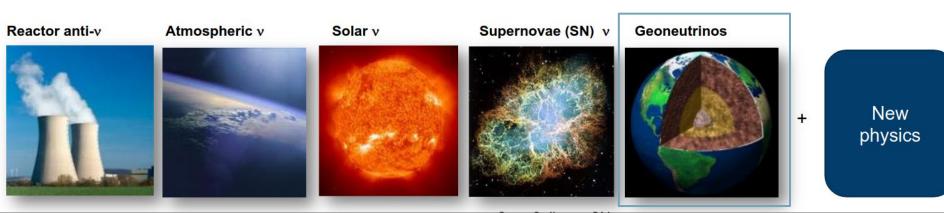
MMTE-2023: Geoneutrino Sensitivity of JUNO


Jiangmen Underground Neutrino Observatory

- Located near Kaiping, Jiangmen in Guangdong province in Southern China
- Designed to measure reactor neutrinos from two NPP at 52.5 km distance (~700 m deep)
- Designed for unprecedented energy resolution (3% at 1 MeV)

20 kton of liquid scintillator —> high statistics

18k 20" PMTs + 25k 3" PMTs —> powerful calorimetric measurement of neutrino energy


Jiangmen Underground Neutrino Observatory

- Located near Kaiping, Jiangmen in Guangdong province in Southern China
- Designed to measure reactor neutrinos from two NPP at 52.5 km distance (~700 m deep)
- Designed for unprecedented energy resolution (3% at 1 MeV)

Multi-purpose detector:

- Neutrino Oscillations: mass ordering (3σ in ~6 years)
- Sub-percent precision for 3 out of 6 neutrino oscillation parameters
- Geoneutrinos
- Atmospheric neutrinos
- Solar neutrinos
- Supernova collapse neutrinos

MMTE-2023: Geoneutrino Sensitivity of JUNO

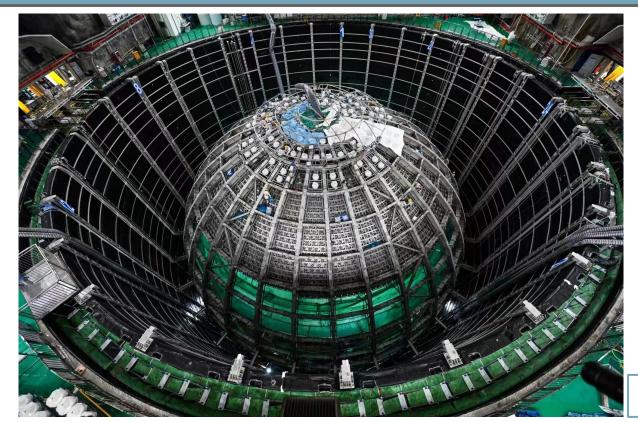
1 TNU (Terrestrial Neutrino Unit) = 1 event / 10³² target protons (~1kton LS) / year with 100% detection efficiency

Geonu = Lithosphere + Mantle

Lithosphere (crust + CLM) predictions

Lithosphere model	Signal [TNU]	Uncertainty [%]
Global	30.9 ^{+6.5}	+21
[Prog. in Earth and Planet. Sci. 2, 5, 2015]	-5.2	-17
JULOC	40.4 ^{+5.6}	+14
[Phys.Earth.Planet.Inter. 299, 2020]	-5.0	-12

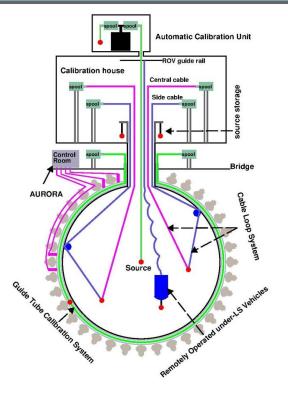
Three groups of BSE models for mantle:


- Cosmochemical (CC): ~2 TNU
- Geochemical (GC): ~10 TNU
- Geodynamical (GD): ~20 TNU

Accessible via anti- v_e measurement ²³⁸ ⁹²U + ²⁰⁶ ⁸²Pb + 8 α + 6 e^- + 6 $\bar{\nu}_e$ + 51.698 MeV ²³⁵U + ²⁰⁷Pb + 7 α + 4 e^- + 4 $\bar{\nu}_e$ + 46.402 MeV ²³²Pb + ^{208}Pb + 6 α + 4 e^- + 4 $\bar{\nu}_e$ + 42.652 MeV ⁴⁰K $\xrightarrow{89.3\%}_{20}$ Ca + e^- + $\bar{\nu}_e$ + 1.311 MeV ⁴⁰K $\xrightarrow{10.7\%}_{18}$ Ar + ν_e + 1.505 MeV Contribution to Earth's heat

Refer to talk given by Virginia Stratti

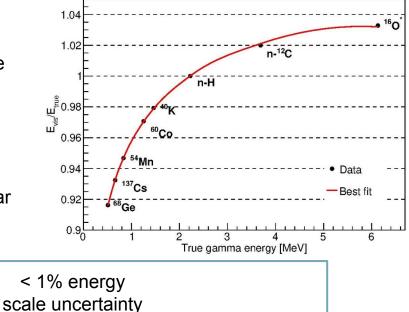
JUNO Timeline


2022-2023 Installation2023 Completion of theconstruction2024 Filling andcommissioning

Refer to talk given by Mariam Rifai

MMTE-2023: Geoneutrino Sensitivity of JUNO

Energy Scale Calibration



JUNO collaboration, JHEP 2021, 4 (2021)

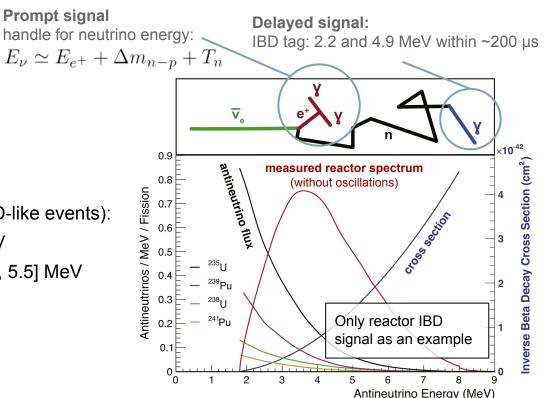
Calibration sources will be regularly inserted into detector

- Understanding of the detector response
- Testing of the reconstruction algorithms
- Calibration of the intrinsically non-linear energy scale

Non-linearity calibration curve

Event Selection (same for geo- and reactor neutrinos)

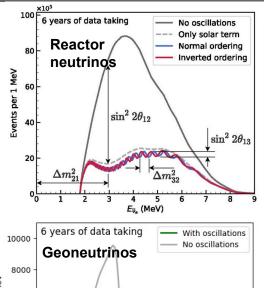
Inverse Beta-Decay (IBD):

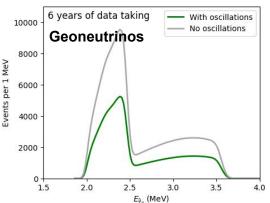

$$\bar{\nu}_e + p \to e^+ + n$$

(reaction threshold: 1.8 MeV)

Selection of IBD candidates:

- Muon veto
- Selection cuts (~10⁴ suppression of IBD-like events):
 - Prompt energy: [0.7, 12.0] MeV
 - Delayed energy: $[1.9, 2.5] \cup [4.4, 5.5]$ MeV
 - Time difference: 1 ms
 - Distance: 1.5 m


Neutrino selection efficiency: 82.2%



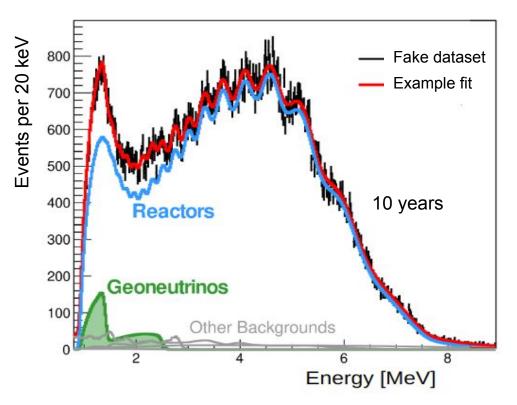
Neutrino Oscillations

- Neutrinos "change" their flavour on the way to the detector. (more precisely, the probability to be detected in the same flavour eigenstate as created depends on energy and travel distance)
- Only electron antineutrinos are visible in JUNO (via inverse beta-decay)
- Both geo- and reactor antineutrinos oscillate, but the oscillation pattern is different:
 - **Reactor neutrino**: fixed baseline (52.5 km) very clear oscillation pattern
 - **Geoneutrino**: different baselines (distributed in the Earth) averaged probability is a working approximation, but an accurate calculation is important when considered together with reactor.

Oscillation parameters must be taken into account. JUNO will measure some of them – important help for geoneutrino measurement!

Geoneutrino Signal and Backgrounds

Signal – geoneutrino

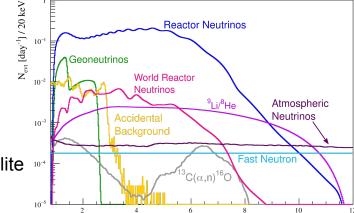

- about 1 event per day
- contributed by ²³²Th and ²³⁸U decays

Irreducible background — reactor neutrinos

- No way to distinguish (in the energy window of geoneutrinos)
- Much higher rate (x35)
- Affected by neutrino oscillations, which JUNO will also measure

Other backgrounds

- Highly suppressed by selection cuts
- May still impact geoneutrino measurement



What is New Since 2016*

- Inclusion of the oscillation parameters in the fit the main effect
- <u>Updated detector response modeling</u>
- Updated set of backgrounds
- Updated reactor flux (less cores will be built)
- Use of reactor antineutrino spectral shape constraint from Daya Bay experiment until we can get a constraint from the TAO satellite detector
- Increased exposure (83.0% -> 91.6%) thanks to improved muon veto strategy
- New and complementary analyses:
 - Asimov datasets (without statistical fluctuations)
 two working groups
 - Toy Monte Carlo datasets with all fluctuations
 one working group

* Previous publications: Yellow Book (2015), R. Han et al. (2016)

Visible Energy [MeV]

	Rate	Rate	Shape
	[counts per day]	uncertainty	uncertainty
Geoneutrinos	1.2	-	5%
Reactor Neutrinos	43.175	-	Daya Bay
Accidentals	0.8	1%	-
⁹ Li/ ⁸ He	0.8	10%	10%
¹³ C(α,n) ¹⁶ O	0.05	50%	50%
Fast Neutron	0.1	100%	20%
World Reactor Neutrinos	1	5%	5%
Atmospheric Neutrinos	0.16	50%	5%

Yellow Book (2015)

July 4-7, 2023

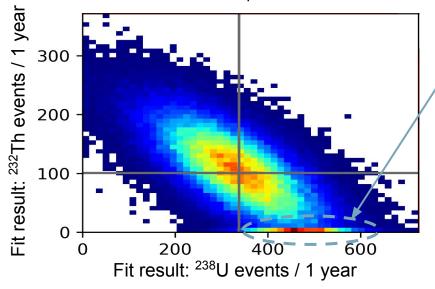
Fit configuration:

- Th/U abundance fixed to the chondritic ratio (3.9)
- Geo- and reactor neutrino rates are free
- Other background rates are constrained
- Shape uncertainty
- Energy scale uncertainty (negligible impact)
- Oscillation parameters free

Existing measurements:

2020 Borexino 17% with 8.9 years [M.Agostini et al., Phys. Rev. D 101, 2020] 2022 KamLAND 15% with 14.3 years [S.Abe et al., Geophys. Res. Lett. 49 (16), 2022]

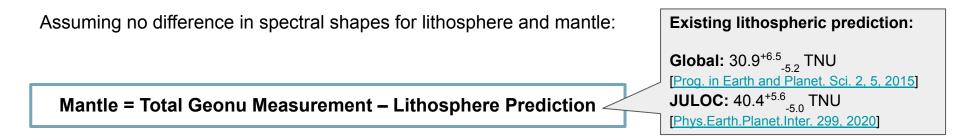
Refer to talk given by Livia Ludhova


Expected geoneutrino precision* (assuming Th/U mass ratio fixed to 3.9)		
1 year	~22%	
6 years	~10%	
10 years	~8%	

* These and further sensitivity numbers are shown for the first time. Paper under preparation.

Distribution of possible fit results with fixed oscillation parameters

• High statistics is crucial:


after 1 year there is a large chance to get Th railed to 0 even with fixed oscillation parameters

• Th and U are strongly anticorrelated: JUNO can disentangle the Th and U contributions and make a very good measurement of their sum

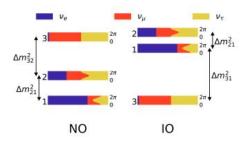
Expected precision

Existing measurements:

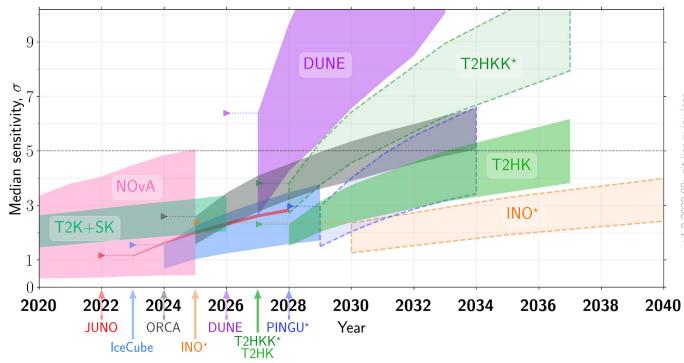
2020 Borexino: 20.8^{+9.4} TNU [<u>M.Agostini et al., Phys. Rev. D 101, 2020</u>] 2022 KamLAND: 4.8^{+5.6} TNU [<u>S.Abe et al., Geophys. Res. Lett. 49 (16), 2022</u>]

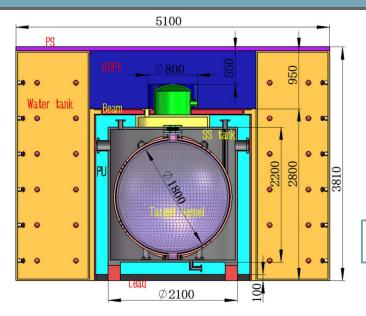
Refer to talks of Livia Ludhova and Virginia Stratti

- Ongoing effort on making a better prediction for the lithospheric signal near JUNO with local geo-model: better precision for mantle measurement
- Estimation of discovery potential (strongly depending on the chosen BSE model) is ongoing


- **Highest geoneutrino statistics** the main advantage w.r.t. other experiments JUNO will collect more geoneutrino events than all the other experiments in 1 year.
- The main challenge is disentangling the geoneutrino signal from the dominant reactor neutrino signal: JUNO is designed to measure it!
- Precise measurement of total geoneutrino flux:
 - JUNO will reach the level of Borexino and KamLAND (~15%) within few years, assuming fixed chondritic Th/U, and improve it to ~10% in 6 years
 - Making no assumption on Th/U ratio JUNO will reach ~15% in 10 years
- **Potential to observe signal from mantle:** JUNO is expected to provide the most statistically significant measurement, complementary to KamLAND and Borexino. Ongoing effort on the local geological model will improve the result.
- Full release of updated sensitivities soon

Backup Slides

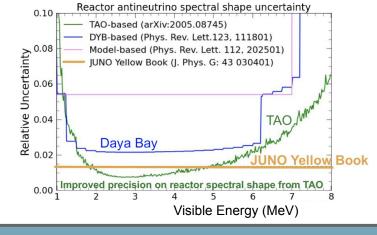

Neutrino Mass Ordering


Probability of finding the α neutrino flavor in the i-th neutrino mass eigenstate. The CP-violating phase is varied $(0\rightarrow 2\pi)$.

```
[P.F. de Salas et al, arXiv:1806.11051]
```


JUNO TAO (Taishan Antineutrino Observatory)

An innovative apparatus:


- 1 ton fiducial volume / 2.6 tons of Gd-LS
- Almost full coverage with SiPM (~50% PDE @ -50°C)

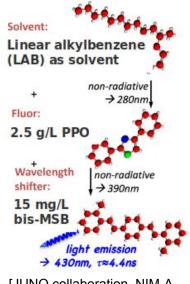
~2% at 1 MeV energy resolution (Gaussian sigma)

30 x JUNO statistics

Measurement of reactor v_e spectrum at 30 m distance from a Taishan NPP core (no oscillations):

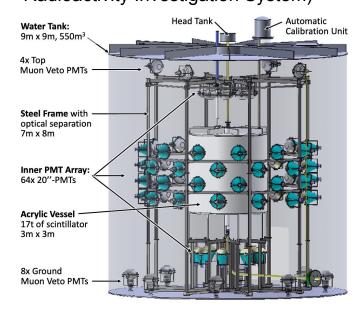
- Will be sensitive to fine structure with better precision
- Provide model-independent reference spectrum for JUNO
- Improvement of nuclear databases

Liquid Scintillator of JUNO

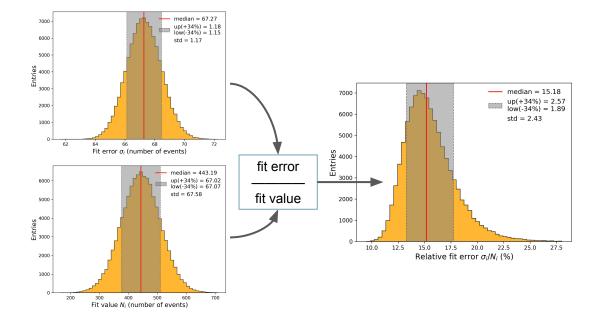


Composition:

```
LAB +
PPO (2.5 g/L) + bis-MSB (3 mg/L)
```


LAB purification:

- 1. Al₂O₃ filtration column (optical properties improvement)
- 2. Distillation (heavy elements removal/
- 3. transparency improvement)
- 4. Water extraction (U/Th/K radioisotopes removal)
- 5. Steam/nitrogen stripping (removal of Ar, Kr, Rn gaseous impurities)


[JUNO collaboration, NIM-A 988, 2021]

Monitored during filling by OSIRIS (Online Scintillator Internal Radioactivity Investigation System)

[arXiv:2103.16900 (2021)]

Uncertainty Estimation with Toy MC

