Revealing the Earth's interior with geoneutrinos

Multi-messenger Tomography of the Earth 2023 4-7 July 2023 - Paris

Outline

- Natural radioactivity and Heat power in the Earth: open questions Virginia Strati
- Overview of experimental results on geoneutrinos
 Livia Ludhova
- What can we learn from geoneutrinos results?
 Virginia Strati
- Perspectives and challenges for geoneutrino experiments Fabio Mantovani
- JUNO's perspectives for geoneutrinos Yury Malyshkin

Open questions about natural radioactivity in the Earth

 What is the radiogenic contribution to terrestrial heat production?

 At which thermal conditions the Earth initially is formed?

 How much U and Th are in the crust and in the mantle?

• What is hidden in the Earth's core?

Heat power of the Earth

- The conduction is not the only way of Earth's cooling: convective motions are responsible for significant fraction of surface heat loss.
- Heat power of the Earth Q [30-49 TW] is the equivalent of ~ 10⁴ nuclear power plants.
- Heat flow observations are sparse, non-uniformly distributed and not reliable in the oceans.
- The quantitative assessment of heat transport by **hydrothermal circulation** remains a difficult task.
 Continents Oceans Total

75 - 85 85 - 95 95 - 150	 The quantitative assessme remains a difficult task.
150 - 450	
CAN'S	
1 Act	

DEEEDENCE	Continents	Oceans	Total
REFERENCE	q _{c⊤} [mW m⁻²]	q _{ocs} [mW m ⁻²]	Q (TW)
Williams et al., 1974	61	92	43 ± 6
Davies, 1980	55	95 ± 10	41 ± 4
Sclater et al., 1980	57	99	42
Pollack et al., 1993	65 ± 2	101 ± 2	44 ± 1
Hofmeister and Criss, 2005	61	65	31 ± 1
Jaupart et al., 2015	65	107	46 ± 2
Davies and Davies, 2010	71	105	47 ± 2
Davies, 2013	65	96	45
Lucazeau, 2019	66.7	89.0	44

The Earth's heat sources

Neglecting tidal dissipation and gravitation contraction (<0.5 TW), the two contributions to the total heat loss (**Q**) are:

- Secular Cooling (C): cooling down caused by the initial hot environment of early formation's stages
- Radiogenic Heat (H) due to naturally occurring decays of Heat Producing Elements (HPEs), i.e. U, Th and K, inside our planet.
- The Urey ratio is a key parameter that can be seen as the ratio of H over Q. It measures the efficiency of the Earth's convective engine in evacuating heat generated by radioactive decays.

$$U_R = \frac{H}{Q} (Bulk Earth)$$

$$U_R = \frac{H - H_{CC}}{Q - H_{CC}} (Convective)$$

 H_{CC} : radiogenic power of the continental crust

The Earth's budget

MANTLE LITHOSPHERE	Radiogenic heat (H)	 H) H_{CC} = radiogenic power of the continental crust H_{OC} = radiogenic power of the oceanic crust H_{CLM} = radiogenic power of the continental lithospheric mantle 		nic power ntal crust nic power crust enic	$C = Q - H$ $C_{M} = Q - H - C_{C}$ $H_{M} = H - H_{LS} - H_{C}$ $H_{LS} = H_{CC} + H_{OC} + H_{CLM}$ $U_{R} = \frac{H - H_{CC}}{Q - H_{CC}}$		
	o • • •		Range [TW]	Adopted [TW]		Range [TW]	Adopted [TW]
	• • • •	н	[10 ; 37]	19.3 ± 2.9	С	[8 ; 39]	28 ± 4
	• • •	${\rm H}_{\rm LS}$	[6;11]	$8.1^{+1.9}_{-1.4}$	\mathbf{C}_{LS}	~ 0	0
Ш	• • •	Н	[0;31]	11.0+3.3	C _M	[1 ; 29]	17 ± 4
COF		Hc	[0;5]	0	Cc	[5 ; 17]	11 ± 2

• The mass of the **lithosphere** (~ 2% of the Earth's mass) contains ~ 40% of the total HPEs: **H**_{LS} ~ 8 TW.

• Radiogenic power of the **mantle** H_M and the contributions to C from mantle (C_M) and core (C_C) are model dependent.

The building blocks of the Bulk Silicate Earth

- The **Bulk Silicate Earth** (**BSE**) describes the primordial nonmetallic Earth condition that followed planetary accretion and core separation, prior to its differentiation into a mantle and crust.
- We can tempt to naively build the BSE in the image and likeness of a primitive meteorite: every year 10⁴ kg of meteorites falling to the ground
- The **chondrites** are undifferentiated rocky meteorites: they represents the initial «cocktail» of the Solar System

CARBONACEOUS (CI):

composition close to Solar photosphere - high concentration of oxides

ENSTATITE (EH):

Isotopic composition more similar to the terrestrial samples - high metallic iron content

References	Chondrite	$a_{BSE}(U) [ng g^{-1}]$
Jackson and Jellinek [160]	CI-EH	14 ± 3
O'Neill and Palme [67]	CI-EH	10
Javoy and Kaminski [157]	EH	15 ± 2
Javoy et al. [101]	EH	12 ± 2
McDonough and Sun [38]	С	20 ± 4
Lyubetskaya and Korenaga [161]	С	17 ± 3
Palme and O'Neill 2007	С	22 ± 3
Arevalo 2010	С	20 ± 4
Wang et al. 2018	С	20 ± 2
Palme and O'Neill [162]	С	23 ± 3
Turcotte 2002*	CI-EH	35 ± 4
Turcotte 2014	CI-EH	31

Different models of Bulk Silicate Earth

				H
	CC	GC GC	GD	FR
	COSMOCHEMICAL	GEOCHEMICAL	GEODYNAMICAL	FULLY RADIOGENIC
	 Enstatites chondrites Sufficiently high iron content to explain the metallic core 	 Chondritic compositions for refractory lithophile elements Constraints from terrestrial samples 	 Energetics arguments of mantle convection Observed surface heat loss 	• The terrestrial heat (47 TW) is assumed to be fully accounted by radiogenic production
H (U+Th+ K) [TW]	11	20	34	47
M (U) [10 ¹⁶ kg]	5	8	14	20

Temperature of the Earth at initial stage of its formation

Geo-neutrinos: anti-neutrinos from the Earth

U, Th and ⁴⁰K in the Earth release heat together with anti-neutrinos, in a **well-fixed ratio**:

Decay	$T_{1/2}$	E_{\max}	Q	$arepsilon_{ar{ u}}$	$arepsilon_{H}$
	$[10^9 \mathrm{~yr}]$	[MeV]	[MeV]	$[{\rm kg}^{-1}{\rm s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 \ ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
$^{232}\mathrm{Th} \rightarrow ^{208}\mathrm{Pb} + 6~^{4}\mathrm{He} + 4e + 4\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

- Earth emits (mainly) antineutrinos $\Phi_{\overline{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$ whereas Sun shines in neutrinos
- A fraction of geo-neutrinos from U and Th (not from 40 K) are above threshold for inverse β on protons:

 $\bar{\nu} + p \rightarrow e^+ + n - 1.806 \, MeV$

- Different components can be distinguished due to different energy spectra: e. g. anti-v with highest energy are from U
- Signal unit: **1 TNU** = one event per 10³² free protons/year

Borexino geoneutrino results

Borexino

- Period: 2007 2019
- Geo-v events: 52.6^{+7.4}-6.3
- Signal: 47.0 +8.7 -7.9 TNU

- Horizontal bars traces the **expected signal** at 1σ C.L.
- In the second decade of the 21st century the results published with greater statistical significance highlighted the necessity of geophysical and geological models for understanding geoneutrino signal.

Borexino collaboration, 2020 - PRD – 101 (1)

Mantle geoneutrino signals from experimental signal

 $S_{Exp}^{i}(U+Th) = S_{M}^{i}(U+Th) + S_{FFL}^{i}(U+Th) + S_{LOC}^{i}(U+Th)$

 U and Th distributed in the Local Crust (LOC) (i.e. ~ 500 km within the detector) gives a significant contribution to the signal (~ 50% of the total).

$$S_M^i(\boldsymbol{U}+\boldsymbol{T}\boldsymbol{h}) = S_{Exp}^i(\boldsymbol{U}+\boldsymbol{T}\boldsymbol{h}) - S_{FFL}^i(\boldsymbol{U}+\boldsymbol{T}\boldsymbol{h}) - S_{LOC}^i(\boldsymbol{U}+\boldsymbol{T}\boldsymbol{h})$$

- The signal of **the Far Field Lithosphere (FFL)** is modeling based on global reference model.
- The Local Crust (LOC) modeling should be built with geochemical and/or geophysical information typical of the local regions.

$S_{LOC}(U+Th)$	9. 2 ± 1. 2 TNU
$S_{FFL}(U+Th)$	16.3 $^{+4.8}_{-3.7}$ TNU

Measurements vs models

S_{Exp} (U+Th) = 47.0^{+8.6}_{-8.1} TNU

BSE models according to different authors:

J = M. Javoy et al., EPSL 293, (2010).

L&K = T. Lyubetskaya and J. Korenaga, J. Geoph. Res. Sol. Earth, 112 (2007)

T = S. Taylor, Proc. Lunar Planet. Sci. Conf. 11, 333 (1980) **M&S** = W. F. McDonough and S. Sun, Chem. Geol. 120,

(1995)

A = D. L. Anderson, Cambridge University Press, (2007)

W = H. S. Wang et al., Icarus 299, (2018)

- **P&O** = H. Palme and H. O'Neill, Treatise of Geochemistry, (2003)
- **T&S** = D. L. Turcotte and G. Schubert, Cambridge University Press, (2002)

The Borexino observations favor geological models that predict a relatively **high concentration of radioactive elements** in the mantle.

Mantle radiogenic power (BX)

Since H_{LS} (U+Th)= $6.9^{+1.6}_{-1.2}$ TW is independent from the BSE model, the discrimination capability can be studied in the space S_M (U+Th) vs H_M (U+Th):

 $S_{M}(U+Th) = \beta \cdot H_{M}(U+Th)$

High scenarioLow scenario $\beta = 0.98$ TNU/TW $\beta = 0.75$ TNU/TW \int GG

Geochemical Model (GC) $H_M(U + Th) = 0.7 - 3.0 \text{ W}$ **Geochemical Model (GC)** $H_M(U + Th) = 7.5 - 10.9 \text{ TW}$ **Geodynamical Model (GD)** $H_M(U + Th) = 19.8 - 23.3 \text{ TW}$ **Fully radiogenic (FR)** $H_M(U + Th) = 30.5 - 34.0 \text{ TW}$

$$S_{Mantle}$$
 (U+Th) = 21.2^{+9.6}_{-9.0} TNU

Earth's heat budget (BX)

 H_{LS} (U+Th+K) = 8.1^{+1.9}_{-1.4} TW

Assuming the contribution from ⁴⁰K to be 18% of the total mantle radiogenic heat

 $H_{Earth} (U+Th+K) = 38.2^{+13.6}_{-12.7} TW$

Borexino and KamLAND geoneutrino results

- Horizontal bars traces the **expected signal** at 1σ C.L.
- In the second decade of the 21st century the results published with greater statistical significance highlighted the necessity of geophysical and geological models for understanding geoneutrino signal.

Borexino collaboration, 2020 - PRD - 101 (1)

Mantle geoneutrinos (KL)

 $S_M^{KL}(\boldsymbol{U} + \boldsymbol{T}\boldsymbol{h}) = S_{Exp}^{KL}(\boldsymbol{U} + \boldsymbol{T}\boldsymbol{h}) - S_{NFC}^{KL}(\boldsymbol{U} + \boldsymbol{T}\boldsymbol{h}) - S_{FFC}^{KL}(\boldsymbol{U} + \boldsymbol{T}\boldsymbol{h}) - S_{CLM}^{KL}(\boldsymbol{U} + \boldsymbol{T}\boldsymbol{h})$

$$_{\rm M}^{\rm BX}$$
(U+Th) = 21.2^{+9.6}_{-9.0} TNU

S

Combined mantle geoneutrinos (KL + BX)

$$S_{M}^{KL}(U + Th) = S_{Exp}^{KL}(U + Th) - S_{NFC}^{KL}(U + Th) - S_{FFC}^{KL}(U + Th) - S_{CLM}^{KL}(U + Th)$$
$$S_{M}^{BX}(U + Th) = S_{Exp}^{BX}(U + Th) - S_{NFC}^{BX}(U + Th) - S_{FFC}^{BX}(U + Th) - S_{CLM}^{BX}(U + Th)$$

 $2.2^{+3.1}_{-1.3}$

Sclm (U+Th) [TNU]

 $1.6^{+2.2}_{-1.0}$

For more details see Fabio's talk

Mantle radiogenic power (KL+BX)

	Poor	Medium	Rich	KL+BX
H _M (U+Th) [TW]	3.2 ^{+2.0} -2.1	9.3 ± 2.9	20.2 ^{+3.2} -3.3	10.3 ^{+5.9} -6.4

Earth's heat (BX + KL)

RE	Radiogenic heat (H)	C = Q - H			Combined KL + BX
DSPHE	Secular cooling (C)	$C_{M} = Q - H - C_{C}$		Q [TW]	47 ± 2
LITH($H_{M} = H - H_{LS} - H_{C}$		H _{LS} (U+Th+K) [TW]	8.1 ^{+1.9} -1.4
NTLE		$H_{LS} = H_{CC} + H_{OC} + H_{CLM}$		H _M (U+Th+K) [TW]	12.5 ^{+7.1} -7.7
ΜA		$U_{R} = \frac{H - H_{cc}}{Q - H_{cc}}$		н [тw]	20.8 ^{+7.3} -7.9
				C [TW]	26 ± 8
CORE		40 (a)		0.8 (b)	
	C _C H _{LS} 24% 17%	∑ 30 - +34% (Y+4 20 - KL+BX	Ī	0.6 +34% 0.5 ⊃ 0.4 KL+BX 0.3	
	H _M			0.2 -34% T	-

Medium-H

Rich-H

Poor-H

0.1

0.0

Poor-H

Medium-H

Rich-H

CORE

27%

CM 32%

Take-away messages

- To deeply understand the experimental geoneutrino results, the use of refined geological models is essential
- The Borexino (KamLAND) observations favor geological models that predict a relatively high (low) concentration of radioactive elements in the mantle
- The combined mantle measurements (BX + KL) falls within the prediction of the Medium-H models
- The era of "multi-site detection" of geoneutrinos is definitely open...

References:

Bellini, G., K. Inoue, F. Mantovani, A. Serafini, V. Strati & H. Watanabe (2021) Geoneutrinos and geoscience: an intriguing joint-venture. *La Rivista del Nuovo Cimento*, 45, 1-105 *Agostni et al. (2020)* Comprehensive geoneutrino analysis with Borexino. Physical Review D, 101.

Thank you