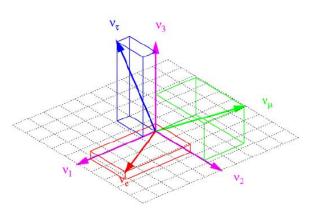
DUNE Perspectives for Atmospheric Neutrinos


Tarak Thakore for the DUNE Collaboration

Multi-messenger Tomography of the Earth (MMTE 2023) July 6, 2023

Neutrino Oscillations

- Neutrino flavor eigenstates are superposition of mass eigenstates, related through a unitary mixing matrix U_{PMNS}), giving rise to the phenomenon of neutrino oscillations
- Neutrino oscillations are well established by many experiments in last 30 years. (Super-K, SNO, KamLAND, K2K, MINOS, Daya Bay, NOvA, T2K, IceCube and others)

$$|
u_{lpha}
angle = \sum_{i} U^{*}_{lpha i} |
u_{i}
angle$$

Pontecorvo–Maki–Nakagawa–Sakata mixing matrix $\mathrm{U}_{\mathrm{PMNS}}$ is given as :

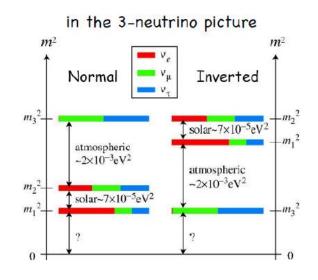
$$U_{\text{PMNS}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{Atmospheric } (\theta_{23} \sim 45^{\circ})} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix}}_{\text{Reactor } (\theta_{13} \sim 9^{\circ})} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Solar } (\theta_{12} \sim 33^{\circ})} \begin{pmatrix} e^{i\frac{\alpha_1}{2}} & 0 & 0 \\ e^{i\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in

Current Status and Unanswered Questions

NuEIT 5 2 (2022)

					Nul 11 5.2 (2022)
		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.3$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
-	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$
data	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$
atmospheric data	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
lqsoi	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
atır	$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00059}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00060\\-0.00057}$	$0.02047 \rightarrow 0.02396$
t SK	$\theta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57\substack{+0.12\\-0.11}$	$8.23 \rightarrow 8.90$
without	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$
W	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.511\substack{+0.028\\-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.025}$	$-2.581 \rightarrow -2.408$

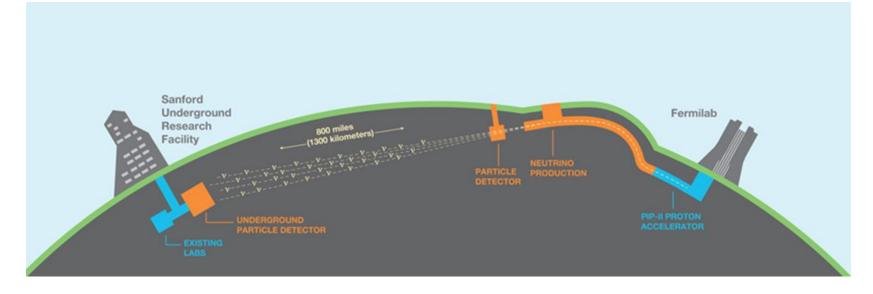

Global neutrino oscillation fit NuFit v5.2 (www.nu-fit.org), JHEP 09 (2020) 178

Many of these parameters have been measured to a precision better than 10% at 3σ

NMO : What is the sign of Δm_{31}^2 ?

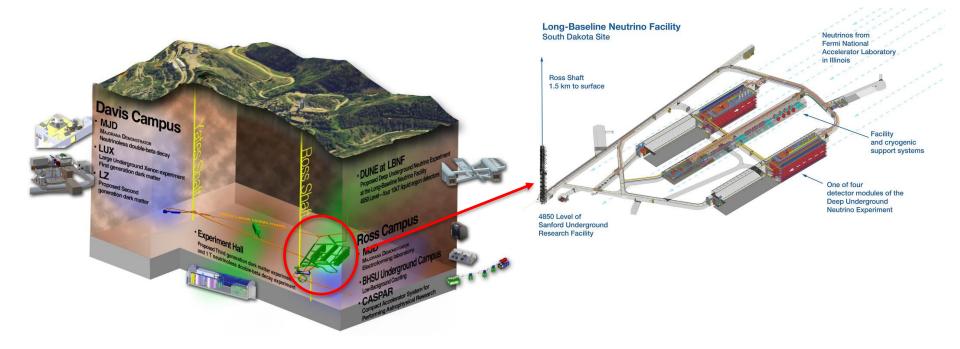
Is the CP symmetry violated in neutrino oscillations? e.g. sin $\delta_{CP} \neq 0$?

Neutrino Mass Ordering (NMO)

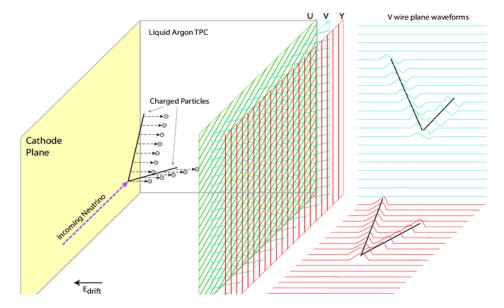

Is there new physics?

- Sterile Neutrinos
- Non-Standard Interactions
- Neutrino decays
- Nucleon decays
- Lorentz Invariance Violation

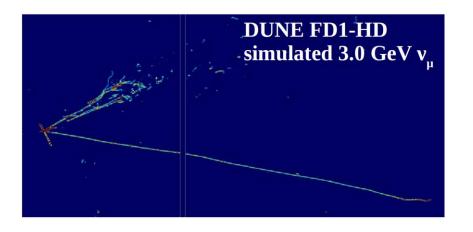
3

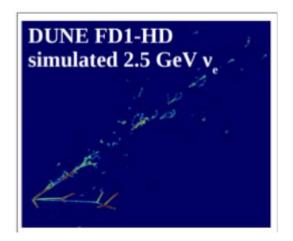

Deep Underground Neutrino Experiment (DUNE)

- The new PIP-II accelerator will direct a high intensity neutrino wideband beam from Fermilab to the Far Detector (FD) site in South Dakota
- Baseline of 1300 km for neutrino oscillation measurements
- The FD consists of four 17 kt Liquid Argon Time Projection Chambers (LArTPC)
- A suite of Near Detectors (ND) will be deployed to control neutrino interaction and flux systematics using data-driven techniques


Sanford Underground Research Facility

- The FD will be located in the SURF caverns with a rock overburden of 1500 m, lowering cosmic muon backgrounds for the experiment
- Cavern excavation at the FD site is 65% complete!


LArTPC Detector Operation

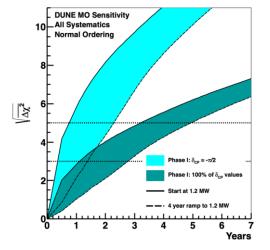


- Ionizing particles produced in neutrino interactions create free electrons
- A photon detection system determine t₀ and enable timing measurements for the vertex reconstruction
- Electrons drift in the LAr volume in a uniform electric field, and induce signals on two anode wire-planes oriented in different directions, providing two 2D tracks views
- Drift positions and timing information in these two views allow reconstruction of 3D trajectories of the particles with high spatial accuracy
- Particle energy is estimated through calorimetry and track length

Simulated Event Displays

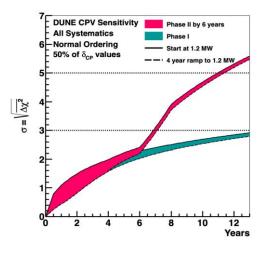
- The LArTPC technology is being validated by a 770 ton protoDUNE detector at the CERN neutrino platform in a charged particle beam.
- Bubble chamber-like high resolution particle tracks with mm-scale spatial resolution
- Various final state topologies produced in neutrino interactions can be well reconstructed, for example, using a variety of Machine Learning techniques

Phased Deployment

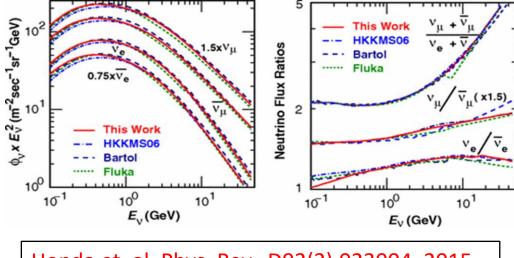

- Phase -1 (2028 FD starts taking data, 2031 neutrino beam starts)
 - Atmospheric neutrino data
 - Beam power 1.2 MW, 2 LArTPC module (1 HD, 1 VD)
 - NMO determination at 5σ in 5 years for any δ_{CP} value
 - CPV determination at 3σ for the most favorable δ_{CP} values
 - Limited BSM physics searches
 - Astrophysical, supernova neutrinos
 - Neutrino cross section measurements

Phase-2 (mid-2030 onwards)

- Beam power upgraded to 2.4 MW,
- All 4 LArTPC modules taking data
- NMO and CPV determination at 5σ
- Extensive BSM physics program
- Full non-accelerator physics program (atmospheric, supernova, nucleon decay)
- Neutrino cross section measurements


Snowmass Neutrino Frontier: **DUNE Physics Summary** arXiv:2203.06100

- NMO discovery in 2-3 years
 - CPV discovery for >50% δ_{CP} value at 5 σ


NMO discovery with Phase 1

CPV discovery sensitivity with DUNE Phase-2 and the ND

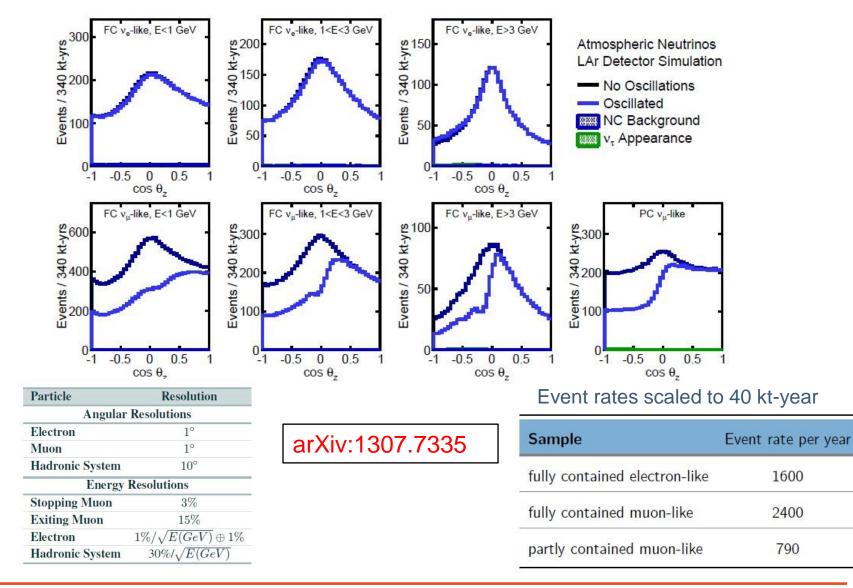
DUNE FD as an Atmospheric Neutrino Detector

Honda et. al. Phys. Rev., D92(2) 023004, 2015

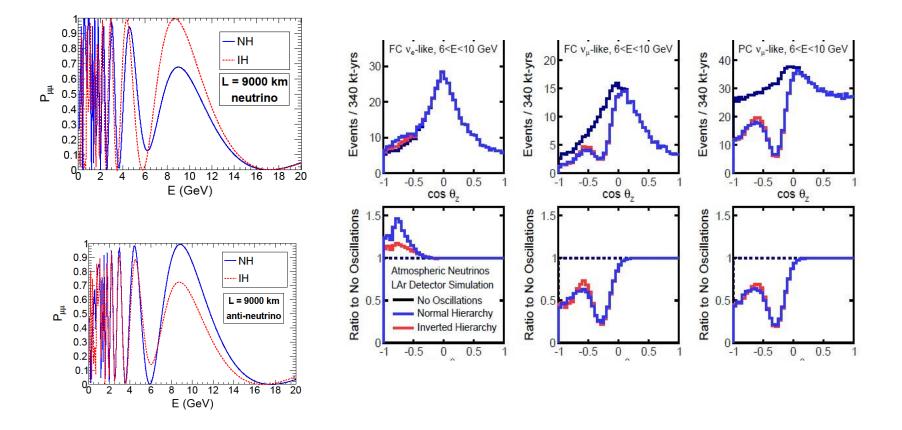
- Good neutrino energy and direction reconstruction over both multi-GeV and sub-GeV ranges is expected from preliminary studies in LArTPCs.
- Ability to tag protons and stopped muons to provide statistical discrimination of v / $\overline{\nu}$
- Very good detector and neutrino interaction systematics control expected
- Good complementarity with the DUNE LBL physics program and other large neutrino telescopes

DUNE FD as an Atmospheric Neutrino Detector

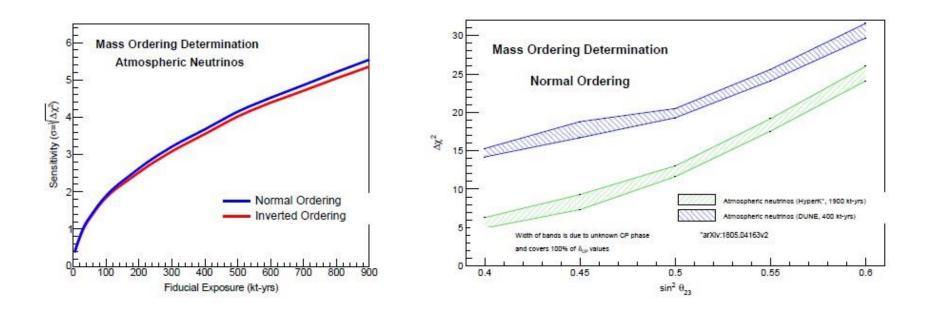
Fine reconstruction


IceCube, KM3NeT	Hyper-K	DUNE
Very high energy astro-particle physics and atmospheric neutrinos	Accelerator LBL and atmospheric neutrino oscillation	Accelerator LBL and atmospheric neutrino oscillation
O(1) Mt O(10 ⁵ events/year)	260 kt O(10 ⁴ events/year)	40 kt O(10 ³ events/year)
Coarse event reconstruction	Good event reconstruction, neutrino flavor identification	Excellent event reconstruction, neutrino flavor identification
E > O(1 GeV)	E > O(1 MeV)	E > O(1 MeV)

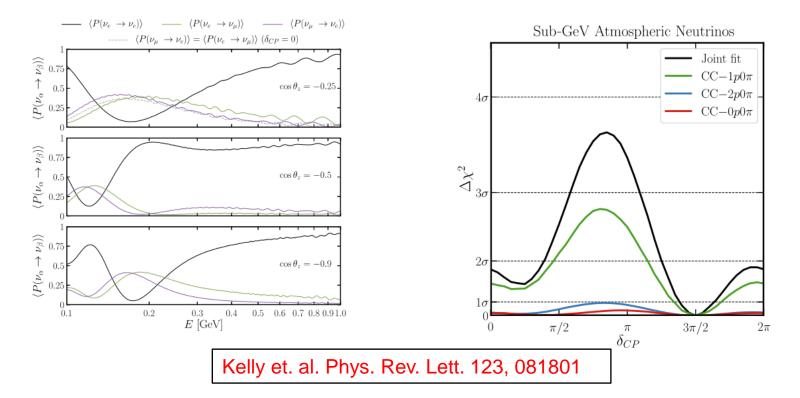
- Preliminary sensitivity studies performed with expected detector performance assumptions by the DUNE collaboration and phenomenologists
- Full atmospheric Monte Carlo simulations for the DUNE FD with the latest detector geometry is a work in progress, followed by a realistic physics sensitivity study


High statistics

Atmospheric Neutrino Spectrum in the FD

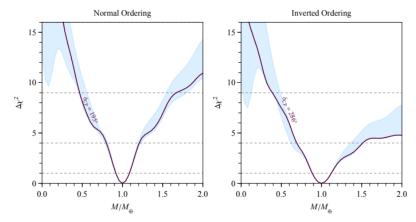

NMO Determination through Matter Effects

- Neutrino propagation is affected by coherent forward scattering with electrons as they pass through the Earth matter.
- The MSW resonance effect allows for a determination of the NMO using multi-GeV atmospheric neutrinos.

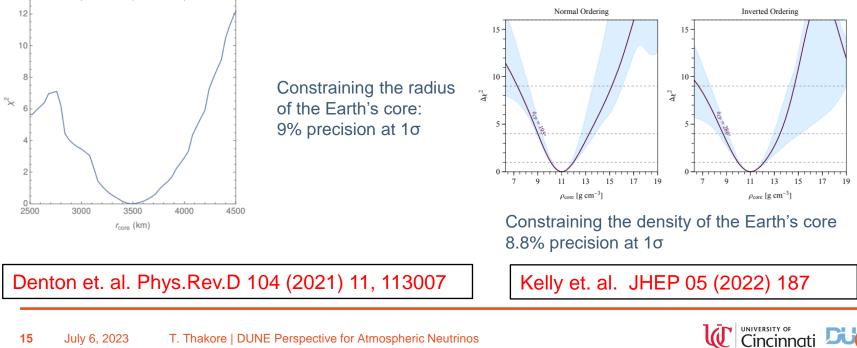

NMO Sensitivity

- 3σ sensitivity to the NMO in about 12 years with a 400 kt-year exposure, independent of δ_{CP} value.
- Though the NMO sensitivity is lower compared to the beam neutrinos, good to have an independent measurement within the same experiment
- Combination of DUNE LBL and atmospherics will result in higher significance --> Could be important in the Phase-1 operations of oscillation parameter measurements

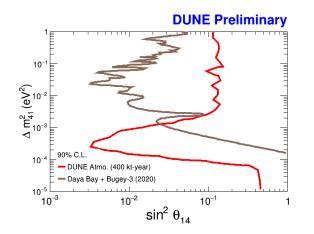
Probing CPV with Sub-GeV Atmospheric Neutrinos



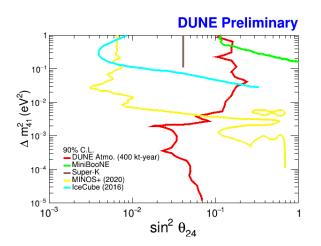
- LArTPC reconstruction will allow measurements of sub-GeV neutrino interactions with a possibility to detect low energy protons, a feature unique to DUNE
- CPV sensitivity present over a broad energy range, need very good direction reconstruction.
- Significant challenges in the neutrino interaction modelling at sub-GeV energies -> Could be overcome by using a movable ND (DUNE-PRISM)

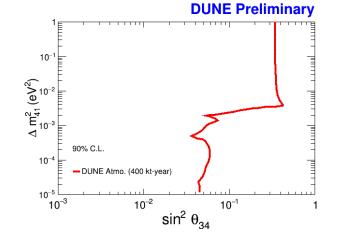


Earth Tomography with sub-GeV Atmospheric Neutrinos


- Accelerator LBL and reactor neutrino • experiments will make very precise measurements of the oscillation parameters over the next decade.
- In turn, they can be used to constrain the ٠ matter density profile in the atmospheric neutrino propagation through the Earth.

Constraining the total mass of the Earth 8.4% precision at 1σ

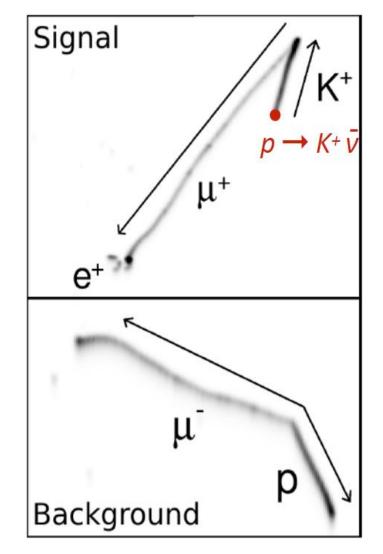



Sterile Neutrino Search with Atmospheric Neutrinos

- Is there a 4th neutrino species (sterile neutrino)?
- DUNE atmospheric data will provide competitive limits to the (3+1) mixing model.

	Track-like events	Shower-like events
Reconstruction efficiency (CC)	80%	80%
Reconstruction efficiency (NC)		0.5%
Neutrino energy resolution	18%	13%
Neutrino direction resolution	10 degrees	10 degrees

•DOI: <u>10.2172/1874285</u>


Proton Decay Search

- Some Grand Unified Theories predict proton decays with a lifetime of 10³⁴ – 10³⁶ years
- DUNE is most sensitive to the channel:

 $p \rightarrow K^+ + \overline{\nu}$

- LArTPC tracking enables good separation of signal and atmospheric neutrino background.
- Lower limit on proton lifetime (90% C.L.):
 - DUNE (400 kt-year) : 1.3 x 10³⁴ years
 - Current limit (Super-K, 260 kt-year) : 5.9 x 10³³ year

Proton decay search with both DUNE and Hyper-K highly anticipated by the HEP community

18July 6, 2023T. Thakore | DUNE Perspective for Atmospheric Neutrinos

 10^{-45} 10^{-40} 10^{-35} 10^{-30} 10^{-25} 10^{-20} 10^{-15}

More Atmospheric Neutrino Studies

- Tau neutrino appearance
- Non-Standard Interactions
- Mass-varying neutrinos

SME coefficient

[GeV⁻¹]

[GeV⁻²]

[GeV⁻³]

[GeV-4]

[GeV⁻⁵]

 $\mathring{c}^{(10)}_{ab}$ [GeV-6]

 $\mathring{a}^{(5)}_{ab}$

 $\mathring{c}_{ab}^{(6)}$

 $\mathring{a}_{ab}^{(7)}$

 $\dot{c}_{ab}^{(8)}$

 $\mathring{a}_{ab}^{(9)}$

<u>аb</u> еµ

 $e\tau$

μτ

eμ

 $e\tau$

μτ

eμ

 $e\tau$

μτ *e*μ

*е*τ μτ *е*μ

*e*τ μτ *e*μ

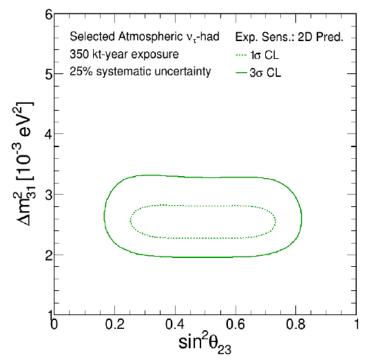
 $\frac{e\tau}{\mu\tau}$ - 10⁻⁵⁰

current bounds

improvement

measurement

L = 15-12800 km


E = 10⁻¹-10⁵ GeV

DUNE first

DUNE

- Lorentz and CPT violation
- Combined atmospheric and neutrino beam oscillation physics

Assume a 25% normalization uncertainty

DUNE atmospheric sensitivities to Lorentz and CPT Violation

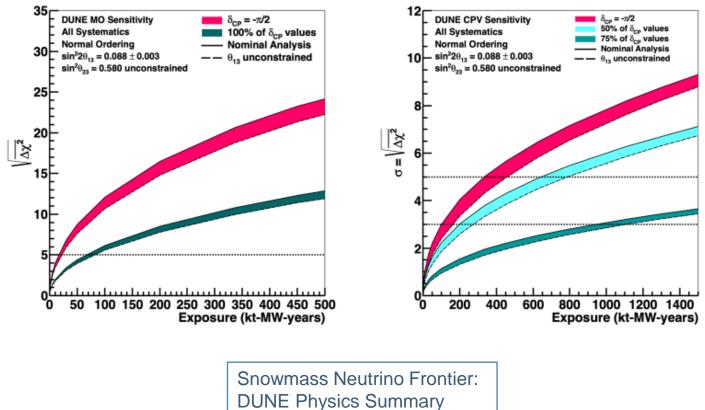
Summary

- 1300 Members
- 211 Institutes
- 34 Countries

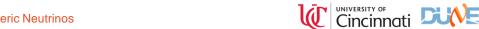
Collaboration Meeting May 2023

- DUNE is an ambitious neutrino oscillation experiment with a great potential with both long-baseline and atmospheric neutrinos powered by the novel LArTPC technology.
- The atmospheric neutrino physics program will be highly complementary to its accelerator physics program as well as with other large atmospheric neutrino telescopes for SM and BSM physics
- The DUNE collaboration is in the process of exploring its atmospheric physics potential with full detector simulations.
- Stay tuned for rapid progress!

19



Backup Slides



NMO and CPV Determination Sensitivity with DUNE LBL

arXiv:2203.06100

21

Systematics for the Atmospheric NMO Study

	Atmospheric	Beam (Assumes ND)
Normalization	Overall (15%)	µ-like (5%)
		e-like (1%)
NC Background	e-like (10%)	µ-like (10%)
		e-like (5%)
Spectrum Ratios	up/down (2%)	
	ν_e / ν_μ (2%)	
	v_{μ}/v_{μ} (5%)	
	$\overline{\nu}_e/\nu_e$ (5%)	
Spectrum Shape	$f(E < E_0) = 1 + \alpha(E - E_0)/E_0$	
	$f(E > E_0) = 1 + \alpha \log(E/E_0)$	
	where $\sigma_{\alpha}=5\%$	
Energy Scales	Muons (stopping 1%, o	exiting 5%)
(Correlated)	Electrons (19	6)
	Hadronic System	(5%)

