OVERVIEW OF EXPERIMENTAL RESULTS ON GEONEUTRINOS

LIVIA LUDHOVA

IKP-2, FORSCHUNGSZENTRUM JÜLICH AND RWTH AACHEN UNIVERSITY, GERMANY

JULY 6TH, 2023

INTERNATIONAL WORKSHOP ON MULTI-MESSENGER TOMOGRAPHY OF THE EARTH

Mitglied der Helmholtz-Gemeinschaft

WELCOME TO THIS JOURNEY TO THE CENTER OF THE EARTH......

- Basic neutrino properties
- Geoneutrino detection
- Borexino and KamLAND
 - detectors
 - analysis strategy
 - geoneutrino latest results

NEUTRINOS AMONG OTHER ELEMENTARY PARTICLES

Leptons - antileptons

NEUTRINO SOURCES

NEUTRINOS ARE SPECIAL

Only weak interactions

- ✓ Difficult to detect
 - o Large detectors
 - Underground laboratories
 - Extreme radio-purity
- ✓ Bring unperturbed information about the source (Sun, Earth, SN)

Open questions in neutrino physics

✓ Mass Hierarchy

linked

- ↑ (Normal vs Inverted)
 - o CP-violating phase
 - \circ Octant of θ_{23} mixing angle
 - Absolute mass-scale
 - Origin of neutrino mass (Dirac vs Majorana)
- Existence of sterile neutrino

In spite of many open questions about neutrino properties, we are able to use neutrinos to learn about the place of their origin – the Earth included!

Geoneutrinos: antineutrinos/neutrinos from the decays of long-lived radioactive isotopes naturally present in the Earth

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrons of electron flavour + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos of electron flavour + 42.8 MeV

²³⁵U (0.7205% of natural U) \rightarrow ²⁰⁷Pb + 7 α + 4 e^- + 4 anti-neutrinos of electron flavour + **46.4 MeV**

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e^- + 1 anti-neutrino of electron flavour + 1.32 MeV (BR=89.3 %)

 40 K + $e^- \rightarrow ^{40}$ Ar + 1 neutrino + **1.505 MeV** (BR = 10.7 %)

□ direct probe of the deep Earth

□<u>released heat and geoneutrino flux in a well fixed ratio</u>

 \Box to measure geoneutrino flux = (in principle) = to get radiogenic heat

□ in practice (as always) more complicated..... (see talk of Virginia)

Earth shines in geoneutrinos: flux ~10⁶ cm⁻² s⁻¹ leaving freely and instantaneously the Earth interior (to compare: solar neutrinos (NOT antineutrinos!) flux ~10¹⁰ cm⁻² s⁻¹)

GEONEUTRINO ENERGY SPECTRA

With the existing detection techniques, we can detect geoneutrinos only from the decay chains of ²³⁸U and ²³²Th above 1.8 MeV energy.

²³⁸U and ²³²Th have different end points of their spectra: the key how to distinguish them!

ANTINEUTRINO DETECTION INTERACTION: IBD

Electron antineutrino detection: delayed coincidence

- Inverse Beta Decay on proton (IBD)
- Charge current interaction mediated by W
- Sensitive only to <u>electron flavour antineutrinos</u>

Prompt-delayed space and time coincidence:

- golden channel for rare signal detection
- powerful <u>background suppression</u>
- energy of the prompt is related to the energy of incident neutrino

Energy threshold = 1.8 MeV

 σ @ few MeV: ~10^{-42} cm^2

(~100 x more than elastic scattering on e⁻)

$$E_{prompt} = E_{visible}$$
$$= T_{e^+} + 2 \times 511 \text{ keV}$$
$$\sim E_{antinu} - 0.784 \text{ MeV}$$

NEUTRINO MIXING AND OSCILLATIONS

- A process that can change neutrino flavour & does NOT change the number of (anti)neutrinos
- For geoneutrinos, for which we can detect only the electron flavour (IBD interaction), we need to know
- <u>P_{ee} electron flavour survival probability</u>

NEUTRINO MIXING AND OSCILLATIONS

i = 1, 2, 3

 $e^{i\alpha_2/2}$

Mass eigenstates

PROPAGATION

$$|\nu_{\alpha}
angle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}
angle$$

v detection v production v propagation as flavor-eigenstate: as coherent superposition e.g. B+-decav Superposition of mass of mass-eigenstates. eigenstates has changed because of phase factors. P_=100% $P = P_{\%} : v_{\phi}$ P.%: V. P.% : V. Weak interaction Different masses create a creates neutrino in Finite probability to detect phase difference over time. flavor-eigenstate. a different neutrino-flavor!

- **3 mixing angles** θ_{ii} :
 - $\circ \quad \theta_{23} \approx 45^{\circ}$

$$\circ \quad \theta_{13} \approx 9^{\circ}$$

- $\circ \quad \theta_{12} \approx 33^{\circ}$
- **Majorana phases** $\alpha 1$, $\alpha 2$ and **CPviolating phase** δ unknown

Neutrino oscillations •

- Non-0 rest mass (Nobel prize 2015)
- Survival probability of certain flavour = f(baseline L, neutrino energy E_{y})
- Different combination (L, E_v) => sensitivity to different (θ_{ii} , Δm_{ii}^2)
- Appearance/disappearance experiments
- Oscillations in matter -> effective (θ_{ii} , Δm_{ii}^2) parameters = $f(e^{-} \text{ density } N_e, E_v)$

OSCILLATIONS AT DIFFERENT BASELINES

For a fixed energy, oscillation probability is a function of the baseline only.

EFFECT OF NEUTRINO OSCILLATIONS

For 3 MeV antineutrino: oscillation length of ~100 km

Geoneutrinos

For the precision of the current experiments: for geoneutrinos we can use an average survival probability of about 0.551 but for reactor antineutrinos we must sum over all world reactors individually!

"No" shape change – only suppresion of the visible signal

Reactor antineutrinos at LNGS

Significant change of the spectral shape

EXPECTED GEONEUTRINO SIGNAL: from $\phi \sim 10^6$ cm⁻² s⁻¹ to a handful of events

Expected "known and big" crustal signal

The signal is small, we need big detectors!

1 TNU = 1 event / 10³² target protons / year cca 1 IBD event /1 kton /1 year, 100% detection efficiency

Expected mantle signal: hypothesis of heterogeneous composition

Motivated by the observed Large Shear Velocity Provinces at the mantle base

Mantle signal is even more challenging!

O. Šrámek et al. "Geophysical and geochemical constraints on geoneutrino fluxes from Earths mantle", Earth Planet. Sci. Lett., 361 (2013) 356-366)

DETECTING GEONEUTRINOS (IBD with LS-detectors)

only 2 experiments have measured geoneutrinos;

liquid scintillator detectors;

•(Anti-)neutrinos have low interaction rates, therefore:

Large volume detectors needed;
High radio-purity of construction materials;
Underground labs to shield cosmic radiations;

KamLAND in Kamioka, Japan Border between OCEANIC / CONTINENTAL CRUST

- built to detect reactor anti-v;
- ~1000 tons;
- •S(reactors)/S(geo) ~ 6.7 (2010) •After the Fukushima disaster (03/2011) many reactors OFF and S(reactors)/S(geo) ~ 1!
- Data since 2002;

•2700 m.w.e. shielding;

Borexino in Gran Sasso, Italy CONTINENTAL CRUST

- originally built to measure neutrinos from the Sun – extreme radio-purity needed and achieved;
- 280 tons;

•S(reactors)/S(geo) ~ 0.3 (2010)

- DAQ 2007 2021;
- 3800 m.w.e. shielding;

HISTORY OF GEONEUTRINO MEASUREMENTS

KamLAND (Japan)

• <u>The first investigation in 2005</u>

 $CL < 2\sigma$ **Nature 436 (2005) 499** 7.09 x 10³¹ target-proton year

• <u>Update in 2008</u> PRL 100 (2008) 221803 73 ± 27 geonu's

 2.44×10^{32} target-proton year

• <u>99.997 CL observation in 2011</u>

106 ⁺²⁹ ₋₂₈ **geonu's** (March 2002 – April 2009) 3.49 x 10³² target-proton year Nature Geoscience 4 (2011) 647

2600

2100

• <u>Results from 2013</u>

116 ⁺²⁸ ₋₂₇ **geonu's** (March 2002 – November 2012) 4.9 x 10³² target-proton year PRD 88 (2013) 033001

2400

Latest result in 2022 (Geophys. Res. Lett. 49 e2022GL099566)

 $183^{+29}{}_{-28}$ geonu's

(March 2002 – December 2020) 6.39 x 10³² target-proton year

Borexino (Italy)

14

34-470/0

3100

- <u>99.997 CL observation in 2010</u>
 - **9.9** ^{+4.1} _{-3.4} **geonu's** small exposure but low background level (December 2007 – December 2009) 1.5 x 10³¹ target-proton year PLB 687 (2010) 299
- <u>Update in 2013</u>

14.3 ± 4.4 geonu's (December 2007 – August 2012) 3.69 x 10³¹ target-proton year 0-hypothesis @ 6 x 10⁻⁶ PLB 722 (2013) 295–300

• June 2015: 5.9σ CL PRD 92 (2015) 031101 (R))

23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys) geonu's

(December 2007 – March 2015) 5.5 x 10^{31} target-proton year 0-hypothesis @ 3.6 x 10^{-9}

• Latest result in 2020 (Phys. Rev. D 101 (2020) 012009) 52.6 +9.4 (stat) +2.7 (sys) geonu's (December 2007 - April 2019) 1.29 x 10³² target-proton year,

BOREXINO DETECTOR

Laboratori Nazionali del Gran Sasso, Italy

- the world's radio-purest LS detector $< 9 \times 10^{-19} \text{ g(Th)/g LS}$, $< 8 \times 10^{-20} \text{ g(U)/g LS}$
- ~500 hit PMTs / MeV
- energy reconstruction: 5 keV (5%) @ 1 MeV
- position reconstruction: 10 cm @ 1 MeV
- pulse shape identification (α/β, e⁺/e⁻)

Operated from 05/2007 to 10/2021

Isotropic scintillation light is produced by charged particles

BOREXINO CALIBRATION

JINST 7 (2012) P10018

Internal calibration

- ~300 points in the whole scintillator volume
- LED-based source positioning system

Source	Туре	E [MeV]	Position	Motivations
⁵⁷ Co	γ	0.122	in IV volume	Energy scale
¹³⁹ Ce	γ	0.165	in IV volume	Energy scale
²⁰³ Hg	γ	0.279	in IV volume	Energy scale
⁸⁵ Sr	Y	0.514	z-axis + sphere R=3 m	Energy scale + FV
⁵⁴ Mn	γ	0.834	along z-axis	Energy scale
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale
⁴⁰ K	γ	1.460	along z-axis	Energy scale
$^{222}Rn+^{14}C$	β,γ	0-3.20	in IV volume	FV+uniformity
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV

External calibration 9 positions with ²²⁸Th source (y 2.615 MeV)

Laser calibration

- PMT time equalisation •
- PMT charge calibration (charge calib. also using ¹⁴C)

BOREXINO MONTE CARLO

Better than 1% precision

for all relevant quantities in the solar analysis <2 MeV

- Tuning on calibration data.
- Independently measured input parameters: emission spectra, attenuation length, PMT after-pulse, refractive index, effective quantum efficiencies.

The spectral shape of signal (geoneutrinos) and most of the background components (see later) is produced with this tuned MC.

EXPECTED GEONEUTRINO SIGNAL AT GRAN SASSO

TNU (Terrestrial Neutrino Unit) = 1 event / 10 ³² target protons (~1kton LS) / year with 100% detection efficiency				
5 (U + Th) [TNU]	S(Th)/S(U)	H (U + Th +K) [TW]		
9.2 ± 1.2	0.24	-		
5.9 ^{+4.9} _{-4.1}	0.29	8.1 ^{+1.9} _{-1.4}		
2.5 – 19.6	0.26 (assuming for BSE chondritic value of 0.27)	3.2 – 25.4		
8.5 – 45.5	0.27 (chondritic)	11.3 – 33.5		
	$\begin{array}{l} \textbf{(U + Th)}\\ \textbf{[TNU]}\\ \textbf{9.2 \pm 1.2}\\ \textbf{5.9}^{+4.9}_{-4.1}\\ \textbf{2.5 - 19.6}\\ \textbf{8.5 - 45.5} \end{array}$	$(U + Th)$ $(TNU]$ $S(Th)/S(U)$ 9.2 ± 1.2 0.24 $5.9^{+4.9}_{-4.1}$ 0.29 $2.5 - 19.6$ 0.26 (assuming for BSE chondritic value of 0.27) $8.5 - 45.5$ 0.27 (chondritic)		

20

SELECTING IBD CANDIDATES

- Charged particles produce scintillation light;
- Gamma rays from the positron annihilation and from the neutron capture are neutral particles but in the scintillator they interact mostly via Compton scattering producing several electrons = charged particles;
- Scintillation light is detected by an array of phototubes (PMTs) converting photons to electrical signal (photoelectrons – pe);
- Number of photoelectrons = function of (energy deposit) -> Eprompt, Edelayed
- Hit PMTs time pattern = position reconstruction of the event $\rightarrow \Delta R$ of events
- Each trigger has its GPS time -> **∆time** of events

OPTIMIZED IBD SELECTION CUTS

Efficiency: (86.98 ± 1.50)%

22

Charge of prompt	Charge of delayed	Time correlation	Space correlation
Q _p > 408 pe	Q _d > 700 (860) – 3000 pe	dt = <mark>(2.5-12.5) μs</mark> + (20-1280) μs	dR < <mark>1.3 m</mark>
 Prompt spectrum starts at 1 MeV 5% energy resolution @ 1 MeV 	 Neutron captures on proton (2.2 MeV) and in about 1% of cases on ¹²C (4.95 MeV) Spill out effect at the nylon inner vessel border Radon correlated ²¹⁴Po(α + γ) decays from ²¹⁴Bi and ²¹⁴Po fast coincidences 	Neutron capture $\tau = (254.5 \pm 1.8) \ \mu s$ 2 cluster event in 16 μs DAQ gate	

Muon veto	Dynamic Fiducial Volume	Multiplicity	α/β discrimination
 2s 1.6 s : ⁹Li(β + n) 2 ms: neutrons Several veto categories Strict and special muon tags Strict and special muon tags Only 2.2% 	 > 10 cm from IV (prompt) • Exposure vs accidental bgr • IV has a leak: shape reco from the data weekly 	 No event with Q >400 pe ±2 ms around promt/delayed Suppressing undetected cosmogenic background, mostly multiple neutrons Negligible exposure loss 	MLP _{delayed} > 0.8 • Radon correlated ²¹⁴ Po(α + γ)
			0 0.2 0.4 0.6 0.8 1 MLP α/β discrimination parameter

GOLDEN CANDIDATES: 154

20

10

Delayed charge spectrum Events/ 100 p.e. --- MC - Data n+¹H n+¹²C

1500

1000

December 9, 2007 to April 28, 2019 •

- 3262.74 days of data taking
- Average FV = (245.8 ± 8.7) ton .
- **Exposure =** $(1.29 \pm 0.05) \times 10^{32}$ proton x year .
- Including systematics on position reconstruction and muon veto loss, for 100% detection eff.

Radial distribution

2000

2500

Q [p.e.]

Distance to the Inner Vessel

We have then golden candidates found as time and spatial coincidences:

- They can be due to:
 - ✓ Geo-neutrinos;
 - ✓ Reactor antineutrinos;
 - ✓Non-antineutrino backgrounds;
- We need to estimate different contributions and then to extract the number of measured geo-neutrinos by fitting the E_{prompt} energy spectrum;

NON-ANTINEUTRINO BACKGROUNDS

1) Cosmogenic background

- ⁹Li and ⁸He ($\tau_{1/2}$ = 119/178 ms)
 - ✓ decay: β (prompt) + neutron (delayed);
- fast neutrons
 - scattered protons (prompt)

Estimated by studying IBD-like coincidences detected AFTER muons.

2) Accidental coincidences; Estimated from OFF-time IBD-like coincidences.

3) Due to the internal radioactivity: (α , n) reactions: ${}^{13}C(\alpha, n){}^{16}O$ Prompt: scattered proton, ${}^{12}C(4.4 \text{ MeV}) \& {}^{16}O (6.1 \text{ MeV})$ Estimated from ${}^{210}Po(\alpha)$ and ${}^{13}C$ contaminations, (α , n) cross section.

NON-ANTINEUTRINO BACKGROUNDS

 ${}^{13}C({}^{210}Po(\alpha), n) {}^{16}O$ $Y_n = (1.45 \pm 0.22) \times 10^{-7}$ $\epsilon_{IBD-like} = 0.56 \text{ for } {}^{210}Po \text{ in LS}$ $\int_{0.55 \text{ MeV}} \int_{0.55 \text{ MeV}$

Accidentals

26

 R_{acc} = (3029.0 ± 12.7) s⁻¹

including scaling factor exp(- $R_{muon} \times 2s$) = 0.896 due to the 2 s muon veto before delayed

Background Type	Events	
⁹ Li background	3.6 ± 1.0	
Untagged Muons	0.023 ± 0.007	
Fast n's (μ in WT)	< 0.013	
Fast n's (μ in rock)	<1.43	
Accidental coincidences	3.846 ± 0.017	
(α, \mathbf{n}) in scintillator	0.81 ± 0.13	
(α, \mathbf{n}) in buffer	<2.6	
(γ, \mathbf{n})	< 0.34	
Fission in PMTs	< 0.057	
²¹⁴ Bi- ²¹⁴ Po	0.003 ± 0.0010	
Total	8.28 ± 1.01	

NEUTRINO BACKGROUNDS

Reactor antineutrinos

	Mueller et al 2011	With "5 MeV bump"
Signal [TNU]	84.5 ^{+1.5} -1.4	79.6 ^{+1.4} -1.3
# Events	97.6 ^{+1.7} -1.6	91.9 ^{+1.6} -1.5

- For all ~440 world reactors (1.2 TW total power)
 - ✓ their nominal thermal powers (PRIS database of IAEA)
 - ✓ monthly load factors (PRIS database)
 - ✓ distance to LNGS (no reactors in Italy)
- ²³⁵U, ²³⁸U, ²³⁹Pu , and ²⁴¹Pu fuel
 - ✓ power fractions for different reactor types
 - ✓ energy released per fission
 - ✓ energy spectra (Mueller at al. 2011 and Daya Bay)
- P_{ee} electron neutrino survival probability
- IBD cross section
- Detection efficiency = 0.8955 ± 0.0150

Atmospheric neutrinos

Energy window	Geoneutrino	Reactor antineutrino	> 1 MeV
Events	2.2 ± 1.1	6.7 ± 3.4	9.2 ± 4.6

- Estimated 50% uncertainty on the prediction
- Indications of overestimation
- Included in the systematic error
- Atmospheric neutrino fluxes from HKKM2014 (>100 MeV) and FLUKA (<100 MeV)
- Matter effects included

Charge spectrum after IBD selection cuts

SPECTRAL FIT with fixed chondritic Th/U ratio

- Unbinned likelihood fit of charge spectrum of 154 prompts
- S(Th)/S(U) = 2.7 (corresponds to chondritic Th/U mass ratio of 3.9)
- **Reactor signal unconstrained** and result compatible with expectations
- ⁹Li, accidentals, and (α, n) background constrained to expectations
- **Systematics** includes atmospheric neutrinos, shape of reactor spectrum, vessel shape and position reconstructions, detection efficiency

Resulting number of geoneutrinos (median value)

$$52.6_{-8.6}^{+9.4}(stat)_{-2.1}^{+2.7}(sys)$$
 events

 $^{+18.3}_{-17.2}$ % total precision

Comparison with KamLAND (SPECTRAL FIT with fixed chondritic Th/U ratio) 29

Borexino (PRD101 (2020) 012009)

KamLAND (Geophys. Res. Lett. 49 e2022GL099566)

1.29 x 10³² (3262 days, 280 m ³ of FV)	Exposure [proton x year]	6.39 x 10^{32} (5227 days, 905 m ³)
154 in total (~90 in the geonu energy window)	IBD candidates	1178 in the geoneutrino energy window
52. $6^{+9.4}_{-8.6}$ (stat) $^{+2.7}_{-2.1}$ (sys) $^{+18.3}_{-17.2}$ %	Geoneutrinos (mass Th/U fixed to 3.9)	183 ⁺²⁹ ₋₂₈ (stat + sys): ^{+15.8} / _{-15.3} %
47. $0^{+8.4}_{-7.7}$ (stat) $^{+2.4}_{-1.9}$ (sys) / (39.3 - 55.4)	Signal [TNU] / (68% CL interval)	Not provided
Shape only, reactor- v free	Analysis	Rate + shape + time

SPECTRAL FIT with Th and U fit independently

Borexino (PRD101 (2020) 012009) Events / (201.176 p.e.) events Geoneutrinos from ²³⁸U 3σ Geoneutrinos from 232Th Reactor antineutrinos 2σ Cosmogenic ⁹Li ²³²Th Random coincidences (o, n) background 1σ - Data # Chondritic ratio **** Th/U = 3.9 15 10 1500 2000 2500 70 Prompt charge [photoelectrons]: 1 MeV ~500 photoelectrons # 238U events — Generated 600 Borexino has no ----- Estimated sensitivity 500 to measure the Th/U Entries/ 0.01 400 ratio 300 ²³⁸U: 29.0^{+14.1}_{-12.9} events 200 N GARAGE ²³² Th: 21.4^{+9.4}_{-9.1} events 100

0.1

0.2

0.3

0.5

232Th/238U signal ratio

0.6

0.7

0.8

0.9

KamLAND

(Geophys. Res. Lett. 49 e2022GL099566)

²³⁸U: 117_{-39}^{+41} events (> 0 @ 3.3 σ CL) ²³²Th: 58 $^{+25}_{-24}$ events

30

MANTLE SIGNAL: IMPORTANCE OF LOCAL GEOLOGY

Borexino dedicated fit: lithospheric signal constrained to (28.8 ± 5.6) events with S(Th)/S(U) = 0.29 and Mantle PDF constructed with S(Th)/S(U) = 0.26, maintaining the bulk Earth chondritic Th/U

Borexino		KamLAND
Fit with lithospheric contribution constrained	Analysis	Direct subtraction of crustal contribution
23 . 7 ^{+10.7} _{-10.1}	Mantle events	-
21 . 2 ^{+9.6} -9.1	Mantle signal U + Th [TNU]	6. 0 ^{+5.6} _{-5.7} (crust S. Enomoto et al. EPSL 258 (2007) 147)
24. 6 ^{+11.1} / (14.2 – 35.7) 68%CL interval)	Mantle heat U + Th [TW]	~ 5 . 4 (= 12 . 4 ^{+4.9} - 7)

Borexino excludes null mantle signal at 99% CL

Limits on the existence of a GEOREACTOR

Borexino

- Hypothetical fission of Uranium deep in the Earth
- Three locations considered
- ²³⁵U : ²³⁸U = 0.76 : 0.23 (Herndon)
- Fit with reactor spectrum constrained

KamLAND

fission ration from commercial reactors assumed averaged oscillation probability U and Th left free in fit

Borexino

Upper limit (95% CL): 18.7 TNU – conversion to TW depends on the location of the georeactor: 2.4 TW in the Earth's center 0.5 TW near CMB at 2900 km 5.7 TW far CMB at 9842 km

KamLAND

1.26 TW at 90% CL (center?)

- Geo-neutrinos has been observed with high statistical significance by Borexino and KamLAND.
- These results are compatible with the range of geological models big success! (see talk of V. Strati).
- Some tension between Borexino and KamLAND results when assuming laterally homogeneous mantle.
- The new interdisciplinary field is born (Neutrino Geoscience conference series since 2005 & last time in 2019 in Prague, ISAPP Summer School Using Particle Physics to Understand and Image the Earth in 2016 and 2018).
- New generation experiments are needed for geologically highly significant results.

Mt. Everest group, flight from Kathmandu (Nepal) to Paro (Bhutan), March 2018

Back up slídes

CALCULATION OF THE EXPECTED REACTOR ANTI-N FLUX

$$\Phi\left(E_{\bar{v}_{e}}\right) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_{m}}{4\pi L_{r}^{2}} P_{rm} \sum_{i=1}^{4} \frac{f_{ri}}{E_{i}} \Phi_{i}\left(E_{\bar{v}_{e}}\right) P_{ee}\left(E_{\bar{v}_{e}};\hat{\vartheta},L_{r}\right)$$

Nuclear and neutrino physics:

- E: energy release per fission of isotope i (Huber-Schwetz 2004);
- •: antineutrino flux per fission of isotope i (polynomial parameterization, Mueller et al.2011, Huber-Schwetz 2004);
- Pee: oscillation survival probability;

Experiment-related:

- Tm: live time during the month m;
- Lr: reactor r detector distance;

Data from nuclear agencies:

- Prm: thermal power of reactor r in month m (IAEA, EDF, and UN data base);
- fri: power fraction of isotope i in reactor r;

2351

239P1

2381

241PL

+ consider energy-dependent IBD cross section -> expected reactor-antinu rate for 100 detection effetungszentru

¹³C(α, neutron)¹⁶O background

- Isotopic abundance of ¹³C: 1.1%
- 210 Po(α) = 14.1 cpd / ton (average value)

