Large Low Shear Velocity Provinces

(LLSVPs)
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Animation from Cottaar & Lekic, 2016
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Fi1. 1. Sketch of Pacific Ocean. Heavy arrows show nine linear chains of islands and
seamounts which increase in age in direction of arrow. Single-headed arrows show direction of
motion, where known, along large transcurrent faults. Small arrows show postulated direction
of flow away from median ridges.
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Image from White, 2016

MANTLE PLUMES

W. Jason Morgan, 1971

“It is assumed that hot spots are the surface
expressions of deep mantle plumes roughly 150 km
in diameter... extending to the deepest part of the
mantle”
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TOP VIEW

Direction of
wave travel

Mantle plumes are notoriously
difficult and controversial to image
in seismology

This is often attributed to
“wavefront healing”




Seismic tomography: Blue = fast, red = slow

First order assumption: blue = cold, red = hot
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They all look quite different.....

Compilation of
different tomography
models across the
Pacific

Ritsema et al. 2021
(AGU monograph)
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Seismic tomography models DO agree at large length scales
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P-wave speed at 2300 km depth

Dziewonski & Woodhouse, 1987
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Hager et al., 1985

Geoid highs are white




geoid high

Positive rEd - SIOW
dynamic
topography
z Assume
o. . Low density
é 11 (hot) = hot
C) material
O = |less dense
O = buoyant
O
b
< . o Deformed
>Z_ Hug? dtledn)sdy Surface
co Initial Surface position

@] / material 4-\ /_,—» ~

fu— Passi
\ / Up::z;rif\g

geoid low  Negative
dynamic topography
or ‘subsidence’

Cold

Active
l Downwelling

Braun, 2010

Active
Upwelling




P-wave speed at 2300 km depth Observed geoid
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D.R. Davies et al. / Earth and Planetary Science Letters 411 (2015) 121-130

(a) Locations of Hotspots and Reconstructed LIPs
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High concentration of hotspots (green circles) and reconstructed eruption sites of large
igneous provinces (yellow stars) above the superplumes suggests a causal relation




G. Schubert et al./ Physics of the Earth and Planetary Interiors 146 (2004) 147-162
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Fig. 6. Sketch of a plume cluster and a superplume.



Numerical modelling of thermochemical plumes
FARNETANI AND SAMUEL: BEYOND THERMAL PLUMES
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Laboratory modelling of 2

Davaille, Nature 1999
thermochemical convection08
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Ishii & Tromp, 1999
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e e 27 deep-rooted mantle plumes (frenh & Rooanowicz, 2015)
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Detailed studies of seismic waveforms suggests LLSVPs may have sharp edges, supporting a chemical origin
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Figure 8 Map showing sharp edges of the large low-shear-wave-velocity provinces as inferred from travel-time and waveform seismic studies. The
background map shows shear-wave tomography model TXBW (Grand, 2002). Sharp edges are represented as thick black lines, with dashed lines . .
Ni et al., Science 2002

representing edges inferred from travel times. Numbers indicate the particular seismic studies (1. He et al. (2006); 2. Luo et al. (2001); 3. Breger and
Romanowicz (1998); 4. Sun et al. (2007b); 5. To et al. (2005); 6. Ford et al. (2006a); 7. He and Wen (2009); 8. Wang and Wen (2004); 9. Sun et al.
(2007b), Sun et al. (2009); and 10. Ni and Helmberger (2003c), Ni and Helmberger (2003a), and Niand Helmberger (2003b)). This figure

was provided by Ed Garnero and Chunpeng Zhao.
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Fig. 1. Several conceptual models of mantle convection currently discussed in the solid-Earth community.

Figures are modified from the following sources, clockwise starting from the top left. Top-left: Torsvik et al. (2014). Top-middle: Kellogg et al. (1999). Top-right:
Courtillot et al. (2003). Bottom-left: Jellinek and Manga (2004). Bottom-middle: Garnero et al. (2005). Bottom-right: Dziewonski et al. (2010).
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Figure 2 | LLSVP observations and interpretations. a, Surface features (upper panel) and seismically determined lower-mantle phenomena (lower panel).
See text for details. b-e, |dealized possibilities proposed to explain LLSVPs. In all cases, subducted material (possibly including post-perovskite, pPv)
surrounds the structure of interest that maps as the LLSVP. b, Plume cluster. ¢, Thermochemical superplume. d, Stable thermochemical pile. e, Metastable
thermochemical pile. LIPs, large igneous provinces; CMB, core-mantle boundary; ULVZs, ultralow velocity zones.

Garnero et al., Nature Geoscience, 2016



Accumulations of subducted oceanic lithosphere?
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Primitive (primordial) material from Earth’s early history? (generally means enriched in

Si and Fe)
McNamara, 2019
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Redox reactions in a magma ocean

2Fe?t - Fe3t + Fef

silicate melt / \

Fe3*-enriched bridgmanite
(Mg,Fe)(Si,Al,Fe3*)0,
(dominant mantle mineral)

slower and denser

core

Wang et al., Nature Communications 2021
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Depth (km)

T>~2300K

Ko et al., Nature 2022
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