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HOT SPOTS

J. Tuzo Wilson, 1963

Figures borrowed from USGS



MANTLE PLUMES

W. Jason Morgan, 1971

“It is assumed that hot spots are the surface 
expressions of deep mantle plumes  roughly 150 km 
in diameter… extending to the deepest part of the 
mantle” 

Image from White, 2016
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Mantle plumes are notoriously 
difficult and controversial to image 
in seismology

This is often attributed to 
“wavefront healing”
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Compilation of 
different tomography 
models across the 
Pacific

Ritsema et al. 2021
(AGU monograph)

Seismic tomography: Blue = fast, red = slow

First order assumption: blue = cold, red = hot

They all look quite different…..



Seismic tomography models DO agree at large length scales

compressional wave speed 
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Dziewonski & Woodhouse, 1987 Hager et al., 1985

P-wave speed at 2300 km depth Observed geoid
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red = slow

Assume
=  hot 
= less dense
= buoyant

geoid high

geoid low
Braun, 2010



Dziewonski & Woodhouse, 1987 Hager et al., 1985

P-wave speed at 2300 km depth Observed geoid
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High concentration of hotspots (green circles) and reconstructed eruption sites of large 
igneous provinces (yellow stars) above the superplumes suggests a causal relation





Numerical modelling of thermochemical plumes



Davaille, Nature 1999Laboratory modelling of 
thermochemical convection

Strong viscosity 
stratification, thick 
bottom layer

Strong stratification, 
thin bottom layer

Weak stratification

cold 
downwellings

hot 
upwellings

Thin, tubular plumes
(a la Morgan, 1971)

Oscillating domes

Two-layer convection 
with thin, tubular plumes 
rising from the interface
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Ni et al., Science 2002

Detailed studies of seismic waveforms suggests LLSVPs may have sharp edges, supporting a chemical origin

Figure by C. Zhao

Hernlund & McNamara, 
2015

McNamara, 2019





Garnero et al., Nature Geoscience, 2016



Brandenburg et al., 2008

Accumulations of subducted oceanic lithosphere?

crustal material in white



Basal magma 
ocean model

Labrosse et al., 
Nature 2007

Primitive (primordial) material from Earth’s early history?

McNamara, 2019

Temperature Field

Compositional Field

(generally means enriched in
Si and Fe)



basalt (i.e. subducted crust)

Primitive material

basalt

primitive

basalt

Deschamps et al. EPSL 2012



Redox reactions in a magma ocean

Wang et al., Nature Communications 2021

1.2% denser
Ra = 1x107

1.2% denser
Ra = 1x106

1.2% denser
Ra = 1x108

1.5% denser
Ra = 1x107

2𝐹𝑒&2 → 𝐹𝑒42 + 𝐹𝑒6
silicate melt

coreFe3+-enriched bridgmanite
(Mg,Fe)(Si,Al,Fe3+)O3

(dominant mantle mineral)

slower and denser



Ko et al., Nature 2022

(Mg,Fe)(Si,Al)O3 + CaSiO3                (Mg,Fe,Ca)(Si,Al)O3
bridgmanite calcium 

perovskite
Ca-rich bridgmanite

T > ~ 2300 K


