Computational and Statistical Aspects of Neutrino Oscillation Tomography

João Coelho APC Laboratory

05 July 2023

Some Numbers

- Oscillation length: L/E ~ 500 km/GeV
- Structures sensitive to oscillation > 100 km
- Volume of the Earth: 10¹² km³
- Number of objects with size ~(100 km)³: 10⁶

Yes, LIGO can measure 10⁻¹⁹ m with a 10⁻⁶ m wavelength. But they have 10²⁴ photons per second!

Measuring Oscillations with A Million Atmospheric Neutrinos

C. A. Argüelles (¹, * P. Fernández (², ³, [†] I. Martínez-Soler (⁰, ^{1, ‡} and M. Jin (靳淼辰) (^{1, §}

¹Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA ²University of Liverpool, Department of Physics, Liverpool, United Kingdom ³Donostia International Physics Center DIPC, San Sebastián/Donostia, E-20018, Spain

https://arxiv.org/abs/2211.02666

Neutrino Oscillations

- Neutrinos are created in a superposition of mass states
- Time evolution generates flavour oscillations

Quantum Mechanics

The Data: Reactor Neutrinos

The Data: Accelerator Neutrinos

Atmospheric Neutrinos

Looking Down for Neutrinos

Looking Down for Neutrinos

Muon neutrinos at 4 GeV

Looking Down for Neutrinos

Muon neutrinos at 4 GeV

Atmospheric Neutrinos

Detector,

 θ_z

Inner

Core

Outer

Core

Time is Energy

- Neutrino oscillograms are not so different from travel time curves
- Seismic waves have many detectors. Neutrinos many sources.
- The question is how do we go from these to an Earth model?

But Data is Hard

0.8

0.4

0.2

0.0

Mixed

10²

0.6 🕤

TABLE V. Best-fit number of events with 7.5 years of livetime for each neutrino flavor and interaction type, as well as atmospheric μ , along with the observed counts from the data. The rate is also given for comparison to other experiments.

Type	Events	Rates $[1/10^{6}s]$
$\nu_{\mu} + \bar{\nu}_{\mu} \ CC$	17656	75.03
$\nu_e + \bar{\nu}_e \ \mathrm{CC}$	1820	7.74
$\nu_{\tau} + \bar{\nu}_{\tau} \ CC$	603	2.56
$\nu_{all} + \bar{\nu}_{all}$ NC	1222	5.19
Atmospheric μ	711	3.02
Total (best-fit)	22012	93.54
Observed	21914	93.08

Forward problem: Generate prediction Already computationally expensive

Tracks

10

Neutrino Energy [GeV]

An inverse problem We don't usually do this!

FIG. 17. Observed number of data events in the analysis binning for the full 8 years of livetime.

0.0

-0.2

-0.6

-0.8

-1.0

cos0 0-^z-0.

Double Inversion?

FIG. 17. Observed number of data events in the analysis binning for the full 8 years of livetime.

Forward Pass 1

Quantum Evolution

Schrödinger:
$$i \frac{\partial}{\partial t} \mathcal{U} = H \mathcal{U}$$

 $\mathcal{P}_{\alpha \to \beta} = |\langle \beta | \mathcal{U}(t) | \alpha \rangle|^2$
Time-independent H :
 $\mathcal{U}(t) = e^{-iHt}$
 $H = VH_D V^{\dagger}$ \longleftarrow Main problem
 $\mathcal{U}(t) = Ve^{-iH_D t}V^{\dagger}$ \longleftarrow Easy to compute

Neutrino Hamiltonian in Vacuum

PMNS Matrix = Vacuum Eigenvectors

(Eigenvectors and Eigenvalues)

Neutrino Hamiltonian in Matter

Earth radius [km]

Quantum Evolution

Schrödinger:
$$i \frac{\partial}{\partial t} \mathcal{U} = H \mathcal{U}$$

 $\mathcal{P}_{\alpha \to \beta} = |\langle \beta | \mathcal{U}(t) | \alpha \rangle|^2$
Time-independent H :
 $\mathcal{U}(t) = e^{-iHt}$
 $H = VH_DV^{\dagger}$
 $\mathcal{U}(t) = Ve^{-iH_Dt}V^{\dagger}$
Time-dependent H :
 $\mathcal{U}(t) = \mathcal{T}e^{-i\int_0^t H(t')dt'} \approx \prod_k e^{-iH(t_k)\Delta t}$

Forward Pass 1

- Trace neutrino path through the Earth
- Break path into N segments of similar electron density
- Compute neutrino evolution through each segment with constant density assumption

OscProb Package

- Diagonalises Hamiltonian to obtain exact probabilities Single Step (2.2µs)
- Three step process:
 - Build Hamiltonian from parameters
 - Solve Hamiltonian
 - Fast algorithm from GLoBES for 3 neutrinos*
 - Propagate neutrino state
- Repeat for each step of constant matter in neutrino path
- PremModel class has built-in Earth layers model
- For a 3D model with 1M bins: ~ 1 second?
- Probably depends on IO scalability

https://github.com/joaoabcoelho/OscProb

85 steps (110µs) †

[†] Up-going (42+2 layers)

05 Jul 2023

*J. Kopp, Int. J. Mod. Phys. C, 19, 523 (2008)

Forward Pass 2

A Chain of Events

- Neutrino rates are a product of source, propagation and detection
- Rate = Flux × Oscillation Probability × Cross-Section × Efficiency
- Lets go through a toy model

Neutrino Flux

- Neutrino flux from cosmic rays hitting the atmosphere
- Follows similar power law spectrum: $\phi \; \alpha \; \text{E}^{\text{-3}}$
- For our toy model, lets add an uncertainty $\phi \; \alpha \; \text{E}^{\text{-}3\pm \delta \gamma}$

Cosmic

Ray

Oscillation & Resolution

- Oscillations will be our main phenomena of interest
- Energy resolution will degrade our ability to see fast oscillations
- We will implement an energy resolution of 20% at the probability level

Neutrino X-Section

- Interaction rate at detector is given by the x-section
- At GeV energies, x-section is linear in energy: $\sigma \; \alpha \; \text{E}$
- For our toy model, lets add an uncertainty on the normalisation

outgoing particles

Detector Efficiency

- Detector needs to see enough light to trigger/reconstruct a neutrino
- More energy means more light. At low energies efficiency drops
- For our toy model, lets add an uncertainty on how much light we see for a given neutrino energy, i.e. what's the threshold

- In KM3NeT, we usually talk about the effective volume or mass
- Analogous to efficiency, but gives also number of target nuclei

Background

- We can now put it all together and we get an expected event rate
- Typically we will also have background sources, e.g. cosmic muons
- Lets model it as some small component added to our event rate
- In this toy, we will assume background events do not oscillate

• We often use machine learning to distinguish between signal and background, and reduce the bkgd. contamination

Inversion

Lets look at some data

- In general, our data doesn't agree with our predictions
- We quantify the disagreement by computing the likelihood of observing this data given the prediction we made
- Relatively simple problem when we're just counting events

Log Likelihood-Ratio

- The natural choice is to use the likelihood P(data | prediction)
- In general our metric is:

$$\lambda(data, pred) = -2\log\left[\frac{P(data \mid pred)}{P(data \mid pred = data)}\right]$$

• If data is distributed as a Gaussian:

$$\lambda(d, p) = \chi^2 = \sum_i \frac{(p_i - d_i)^2}{\sigma_i^2}$$

• For Poisson distributed data, this results in:

$$\lambda(d, p) = 2\sum_{i} p_i - d_i + d_i \log(d_i/p_i)$$

Now lets try to fix the prediction

• We can play around with multiple parameters to minimize -2logL

Now lets try to fix the prediction

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

Now lets try to fix the prediction

- In practice, we use gradient descent and fit all parameters
- We can then build confidence regions around any parameter by considering what parameter values have -2 Δ logL < α

The Real Challenge

- Fitting 1M parameters is on a par with some Machine Learning problems
- Impossible to use 2nd order methods for gradient descent (Hessian too large)
- Computing the gradient requires at least 1M forward predictions if we don't have a differentiable simulation model
- At least 1 sec per prediction, so ~ 300 cpu-hours per gradient
- Without a Hessian, expect ~ 100 iterations to converge: O(cpu-years)
- And all of this is somewhat optimistic. Ignoring many other bottlenecks

Of course, we can start with a less ambitious model of the Earth

Thank you!

The Structure of the Universe

Proton Nucleus Neutron Electron u d u Proton d Neutron

Neutrino Oscillations

- There are 3 neutrinos, so things are a bit more complicated
- Two independent differences in mass-squared (Δm_{21}^2 , Δm_{32}^2)
- 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CPV phase δ_{CP}

Missing Pieces

symmetries

- Is $\theta_{23} = \pi/4$? Underlying symmetry?
- Do neutrinos violate CP? (δ_{CP})
- What is the mass ordering? (Mass Hierarchy)

Cherenkov Radiation

Muons and electrons can travel faster than light in water

Emit light shockwave

Neutrino Example

Measuring Neutrinos

Example of L/E Plot

- This exposure (300 kton-years) contains ~ 1200 neutrinos
- In total we expect ~ 0.5 M neutrinos in ORCA in 10 years (70 Mton-years)

IceCube Response Function

FIG. 10. Final level cosine zenith resolutions for different classes of neutrino events.

FIG. 11. Final level energy resolutions for different classes of neutrino events. All events are reconstructed using a track-plus-cascade hypothesis.