Current and future neutrino experiments with tomography potential

성균관대학교

Carsten Rott University of Utah / Sungkyunkwan University

MMTE 2023 - Paris

- Motivation
- Neutrino Oscillation Tomography
- Understanding sensitivities with a generic neutrino detector
- Neutrino Experiments Status
- Summary / Outlook

Motivation (Particle Physics \Rightarrow Earth Science)

- What can neutrino detectors do for Solid Earth Science ?
 - Muon Radiography
 - Atm. airshower muon absorption
 - **Geo-neutrinos**
 - Low-energy neutrino detection from nuclear decays
 - Neutrino absorption tomography
 - Atmospheric air shower high-energy neutrino absorption
 - Neutrino oscillation tomography
 - Atmospheric air shower neutrino oscillations

Geo-neutrinos nature

U and Th geo-v

Neutrino absorption tomography

Neutrino oscillation tomography (Nu mu to Nu mu) 0.9 0.8 07 0.6 0.5 -0.8 -0.6 -0.5 -0.4

MMTE 2023, Paris, France

Carsten Rott

Motivation (Particle Physics \Leftarrow Earth Science)

- What can neutrino detectors do for Solid Earth Science ?
 - Muon Radiography
 - Atm. airshower muon absorption
 - **Geo-neutrinos**
 - Low-energy neutrino detection from nuclear decays
 - Neutrino absorption tomography
 - Atmospheric air shower high-energy neutrino absorption
 - Neutrino oscillation tomography
 - Atmospheric air shower neutrino oscillations

Geo-neutrinos nature

U and Th geo-v

Neutrino absorption tomography

Neutrino oscillation tomography (Nu mu to Nu mu) 0.9 0.8 07 0.6 0.5 -0.8 -0.6 -0.5 -0.4

Motivation - Neutrino Oscillation Tomography

- New Method to understand inner Earth
 - Inner Earth
 Composition
 - Light elements in the outer core ?
 - Understand the Geodynamo
 - Lower mantle density and anisotropy
- Apply neutrino physics to Earth Science

https://www.km3net.org/

http://www.hyper-k.org/

Motivation - Neutrino Oscillation Tomography and understanding general detector sensitivity

Neutrino Oscillations Basics

- Neutrinos come in three different flavors: V_e, V_μ, V_τ
- A neutrino created as one flavor can change into a different flavor
- This phenomenon (neutrino oscillations) depends on the energy of the neutrino and the distance traveled
- It further depends on the "potential" the neutrino travels through

Neutrino Oscillation Tomography

Motivation - Methodology

- The Earth matter density profile can be determined from seismic measurements
- Matter induced neutrino
 oscillation effects however
 dependent on the electron
 density
- Given a matter density profile the "average" composition (or Z/A) along the neutrino path can be determined using neutrino signals (Oscillation tomography)

Electron density in core Y_c=electron/nucleons

corresponding zenith angles for boundaries inner core $\theta_v < 169^\circ$ (cos $\theta_v < -0.98$) outer core $\theta_v < 147^\circ$ (cos $\theta_v < -0.84$)

Z/A ratios

Element		Z	A	Z/A
Hydrogen	Н	I	I.008	0.9921
Carbon	С	6	12.011	0.4995
Oxygen	Ο	8	15.999	0.5
Magnesium	Mg	12	24.305	0.4937
Silicon	Si	14	28.085	0.4985
Sulfur	S	16	32.06	0.4991
Iron	Fe	26	55.845	0.4656
Nickel	Ni	28	58.693	0.4771

Z - Atomic Number **A** - Atomic Mass

Z/A ratios

Atmospheric Neutrinos

Carsten Rott

How to read an oscillograms

Oscillogram ("normal" electron density)

Oscillogram (enhance electron density)

Oscillograms

Rott & Taketa 2015

Statistical Method

- Generate template for expected number of events and their distribution in energy and zenith angle for two different outer core composition models (Model A and Model B)
- Assume one composition and calculate likelihood with respect to A and B and take ratio
- Perform pseudo experiments
- Distribution tells us the probability to distinguish the two models if the measurement were to be done 10^4 Model A: Y = 0.4656

19

Rott & Taketa 2015

Sensitivity

- I0MTyrs of a PINGU-like data:
- Probe
 ~2-4wt%
 hydrogen
- Reject extreme core composition models

How can we increase sensitivity ?

- Dependence on the angular resolution and energy resolution
 - Assuming 30MTyrs

Rott & Taketa 2015

Distinguishing Outer core models

Neutrino Source and Detectors

Atmospheric neutrinos are a natural steady source of muon and electron neutrinos at

the energy range relevant for neutrino oscillation tomography

• $\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_e \nu_\mu \nu_\mu$

- Detector requirements for neutrino oscillation tomography
 - good energy resolution ⇒ fully contained events, good optical coverage
 - good angular resolution ⇒ precise timing, good
 optical coverage
 - **large volume** ⇒ acquire high statistics neutrino sample

MMTE 2023, Paris, France

Carsten Rott

Principle of an optical Neutrino Telescope

Large Water Cherenkov Neutrino Detectors

KNO Hyper-K Super-K

Lake Baikal

ANTARES KM3NeT ORCA

Active Construction Planned IceCube Upgrade IceCube-Gen2

26

Neutrino Telescope Science

- Intrinsic to neutrino telescopes to enable extremely diverse scientific programs !
 - Example IceCube -Very diverse science program, with neutrinos from I0GeV to EeV, and MeV burst neutrinos

Neutrino Experiments (large volume water/ice Cherenkov detector)

see talk by Sanjib K Agarwalla Carsten Rott

The IceCube Neutrino Telescope

IceCube Upgrade

- 7 new, high-precision strings in the central, densely instrumented region. Funded, installation in 2025.
- Benefits: New detector technologies. Better low energy reconstruction. Improved flavor identification. Precise calibration of detector medium

MMTE 2023, Paris, France

Carsten Rott

0.70

0.60

0.65

D-Egg

IceCube-Gen2

- Technical design report (TDR) ready soon
- Baseline design 120

 additional optical strings,
 240m string spacing
 following Fibonacci sequence
 (Sunflower geometry)
- Radio component to target at UHE

KM3NeT / ORCA (Oscillation Research with Cosmics in the Abyss)

see talk by Veronique Van Elewyck

KM3NeT

Km3Net

KM3NeT: ARCA & ORCA

ARCA → TeV-PeV neutrino astronomy
ORCA → neutrino mass ordering with few-GeV atmospheric neutrinos

ORCA: Oscillation **R**esearch with **C**osmics in the **A**byss

ARCA: Astroparticle Research with Cosmics in the Abyss

KM3NeT 2.0 Letter of Intent: arXiv:1601.07459 and J.Phys. G43 (2016) 084001

- ORCA (Oscillation Research with Cosmics in the Abyss)
 - anchored on the seabed off the shore of Toulon (France)
 - Volume of 7 Mton of seawater
 - 115 vertical strings (20m horizontal spacing)
 - 18 modules per with 9m vertical separation

- 31 3-inch PMTs in 17-inch glass spher (cathode area ~3x10-inch PMTs)
- Front-end electronics, digitisation, optical signal → glass fibre
- Single penetrator
- Advantages:
 - Increased photocathode area
 - 1-vs-2 photo-electron separation
 → better detection of coincidences
 - Directionality
 - Cost / photocathode area
 - Minimal number of penetrations
 → reduced risk

KM3NeT (status Fall 2022)

Km3Net

- ANTARES completed construction in 2008
 - ~2500m deep, 12 Vertical lines, each 350m high
 - Decommissioned May 2022
- KM3NET:
- ORCA: 2500 m deep, 20m string spacing, 10 detection unites running
- ARCA: 3500m deep, 90m string spacing, 19 detection units successfully deployed

Neutrinos !

Baikal-GVD

0 m

- 2022: Successfully deployed 10 clusters, 5 laser stations
- Each cluster has 288 OMs and depth 750-1275m
- $2025/2026 \sim 1 \text{km}3 \text{ GVD}$ with total of 16-18 clusters
- 2022-2024 "Conceptual Design Report" for next generation neutrino telescope in Lake Baikal

Hyper-Kamiokande

see talk by Andrew Santos

Hyper-Kamiokande

https://lib-extopc.kek.jp/preprints/PDF/2016/1627/1627021.pdf

Hyper-K under construction, completion in 2027

Possibility of second tank in Korea could double the fiducial volume PTEP 2018 (2018) 6, 063C01, Prog Theor Exp Phys (2018)

Proposed detectors

P-ONE

- Envisioned full detector:
 - 1211 strings
 - 30 hDOM per string
 - 7.5 km^3
 - 3475m depth at South China Sea
 - Underwater robots for deployment and maintain the detector

MMTE 2023, Paris, France

Carsten Rott

Future Neutrino Telescope Network

- Attempts on-going to coordinate efforts among the neutrino telescope community
 - GNN
 - Future Neutrino Telescope Network

Neutrino Oscillation Tomography Road Ahead

Goals

(1) Demonstrate
feasibility of neutrino
oscillation tomography
(2) Perform first
neutrino oscillation
tomography
measurement

(3) Distinguish specific Earth composition models via oscillation tomography

Detectors

• Now

- Feasibility of very large volume neutrino detectors has been demonstrated (lceCube, ...)
- High-precision neutrino detectors demonstrated (Super-K, ...)
- Near future
 - ~IMT detectors with 2-10GeV neutrino sensitivity (Upgrade, ORCA, Hyper-K, Baikal-GVD (?) ...)
- More distant future
 - >>10MT detector with 2-10GeV neutrino sensitivity (new detector, augmented PINGU or ORCA)

Conclusions

- Neutrino oscillation tomography is a novel method to better understand the Earth interior
 - Measure the Earth interior composition
 - Extremely sensitivity to hydrogen
 - Sensitivity to lower mantle density / LLSVP
- IceCube Upgrade/Hyper-K/ORCA will be able to put first experimental constrains on the Earth Core water content within first few years of operations (given normal mass hierarchy)
- The next-generation of detectors / dedicated experiments offer the long-term prospect to distinguish specific core models
 - very large high statistics sample
 - good energy resolution and angular resolutions

Density measurement

W.Winter Nucl.Phys. B908 (2016) 250-267

Density measurements

 20
 2
 2
 2

 12
 10
 10
 12

 12
 10
 10
 12

 12
 10
 10
 12

 12
 10
 10

 13
 10
 12

 14
 1
 1

 15
 1
 1

 16
 1
 1

 17
 1
 1

 18
 1
 1

 19
 1
 1

 10
 1
 1

 10
 1
 1

 11
 1
 1

 10
 1
 1

 11
 1
 1

 11
 1
 1

 11
 1
 1

 12
 1
 1

 13
 1
 1

 14
 1
 1

 15
 1
 1

 16
 1
 1

 17
 1
 1

 18
 1
 1

 19
 1
 1

 10
 1
 1

 11
 1
 1

 12
 1
 1

 13
 1
 1

 14
 1
 1

 15<

 10^{2}

PINGU

Depth [km]

 10^{3}

Percentage errors achievable with 10 years of data

0

 10^{1}

ORCA **PINGU** NO NO IO ΙΟ Layer Crust (1) No sens. No sens. No sens. No sens. Lower Lithosphere (2) No sens. No sens. No sens. No sens. Upper Mesosphere (3) -53.4/+55.0 No sens. -51.2/+53.4 -69.1/+52.2 Transition zone (4) -79.2/+38.3 No sens./+72.2 -61.2/+35.6 -52.7/+45.8 Lower Mesosphere (5) -5.0/+5.2-4.0/+4.0-4.7/+4.8 -10.5/+11.6 Outer core (6) -7.6/+8.2 -40.2/No sens. -5.4/+6.0-6.5/+7.1 -60.8/+32.9 No sens. No sens. Inner core (7)No sens.

Excellent sensitivities to the lower mantle density and give a robust lower bound on the outer core density

PINGU and ORCA can provide complementary information due to different locations. Seismic measurements show irregular wave propagation zones in the lower mantle

Carsten Rott

Inner core (7)

Garnero, McNamara, Shim Nature Geoscience 9, 481–489 (2016)

http://www.nature.com/ngeo/journal/v9/n7/pdf/ngeo2733.pdf

- Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle
- Large low shear velocity provinces (LLSVP) up to I,200km above CMB

Lower mantle

Anisotropic lower mantle

Neutrino Oscillations in Matter

slide from Walter Winter

Thank you !

Rott & Taketa 2015

Uncertainty due to mixing parameters

Capozzi, F. et al. Status of three-neutrino oscillation parameters, circa 2013. Physical Review D 89, 093018 (2014).

Rott & Taketa 2015

Uncertainty due to Earth model

MMTE 2023, Paris, France

61

Carsten Rott