Search for WIMPs and light Dark Matter with XENON experiments

Yongyu Pan vongyu.pan@lpnhe.in2p3.fr

Journées de Rencontres Jeunes Chercheurs 2023

26 Oct, 2023 Saint-Jean-de-Monts

1. Introduction

- 2. Overview of XENON & first results
- 3. S2-only analysis for light DM
- 4. My ongoing analysis
- 5. Summary and perspectives

Why dark matter?

XENON

Gravitational lensing

 \Rightarrow Makes up of 26.8% of total mass-energy content of the universe

Rubin V C, Ford Jr W K. Rotation of the Andromeda nebula from a spectroscopic survey of emission regions[J]. The Astrophysical Journal, 1970, 159: 379.

26 October, 2023

Search for WIMPs and light Dark Matter with XENONnT experiment

Yongyu PAN

What might be Dark Matter?

Characteristics of DM:

- BSM particles
- Electrically neutral
- Long-lived

3 mass regimes:

- Hot dark matter: < 1 eV
- Warm dark matter: ~ keV
- Cold dark matter: GeV TeV

⇒ Small mass particles might show the disagreement with large-scale structure and CMB results

⇒ WIMPs (Weakly interacting massive particles)

Yongyu PAN

How to detect?

XENON

• Colliders production Measure missing momentum from $\ \chi \overline{\chi}$ $p+p o \chi \overline{\chi} + X$

• Indirect detection Detect annihilation SM products $\chi \chi \rightarrow \gamma \gamma, \gamma Z, \gamma H$ $\chi \chi \rightarrow qq, W^+W^- \rightarrow e + e^-, p, v's$

• Direct detection Detect the deposited energy of scattering process (light / charge / heat signals)

Direct detection of WIMPs

Jodi Cooley, Dark Matter Direct Detection of Classical WIMPs, 2021 Les Houches Summer School lecture manuscript

26 October, 2023

Search for WIMPs and light Dark Matter with XENONnT experiment

6/25

Yongyu PAN

1. Introduction

- 2. <u>Overview of XENON & first results</u>
- 3. S2-only analysis for light DM
- 4. My ongoing analysis
- 5. Summary and perspectives

XENON project

XENON

@ Gran Sasso National Laboratory (LNGS), Italy

How to detect a particle in our huge xenon tank?

- S1: Prompt scintillation light
- S2: Secondary scintilation light induced by ionionized electrons
- Position reconstruction: drift time + PMT pattern
- Energy reconstruction:

 $E=W(rac{cs_1}{g_1}+rac{cs_2}{g_2})$

W: average energy to produce a quanta cS1, cS2: <u>corrected</u> area of S1 and S2 g1, g2: gain of S1 and S2

Yongyu PAN

How to identify WIMPs?

arXiv:2303.14729 [hep-ex]

How to calibrate our detector?

Calibration for ER:

XENON

ERs from ²¹²Pb beta-decays from injected gaseous ²²⁰Rn:

- To define cS1 vs cS2 response for ER
- To validate cut acceptance

ERs from injected gaseous ³⁷Ar:

- mono-energetic at 2.8 keV
- To validate the low-energy ER response

Calibration for NR:

NRs from ²⁴¹AmBe neutron source:

- Tagged by a coincident gamma captured by neutron veto
- To define cS1 vs cS2 response for NR

How to identify the background?

XENON

• Dominated by beta-decays of 214 Pb (a daughter of 222 Rn) 10⁴

Surface background:

- beta decays of ²¹⁰Pb/²¹⁰Bi from TPC wall
- suppressed by fiducial volume cut

NR (neutron) background:

• Neutrons from spontaneous fission and (a,n) reaction

Accidental coincidence (AC) background:

• Random pairing of S1 and S2 lone signals

Signal-like region containing 50% of a 200 GeV/c² WIMP signal with highest signal-to-noise ratio

Yongyu PAN

26 October, 2023

Search for WIMPs and light Dark Matter with XENONnT experiment

Upgrade from XENON1T to XENONnT

26 October, 2023

Search for WIMPs and light Dark Matter with XENONnT experiment

- Increased xenon target mass
- New xenon purification system
- ♦ Reduction of electronegative impurities
 ⇒ Longer electron lifetime
- Novel Rn distillation column
- Concentration: 1.8 µbq/kg
- Reduction of ER background by a factor of ~5

	Full drift time (ms)	Electron lifetime (ms)
1T	0.67	0.65
nT	2.2	~15

XENON

First results from XENONnT

- 1. Introduction
- 2. Overview of XENON & first results
- 3. <u>S2-only analysis for light DM</u>
- 4. My ongoing analysis
- 5. Summary and perspectives

26 October, 2023

Yongyu PAN

What is the background in S2-only

XENON

Two main challenges compared to normal S1/S2 analysis:

- 1. Small signals \Rightarrow more background, noises...
- 2. Lack of $S1 \Rightarrow$ incomplete background model

What is the background in S2-only

1. Data selection: Eliminate unwanted events such as gas events, surface events, pileup of single electrons... 2. Identifying background: ER background from beta emitter (eg. ²¹⁴Pb)
 CEvNS (coherent nuclear scattering of ⁸B solar neutrinos) and cathode events

Yongyu PAN

XENON

Limits set by S2-only analysis

XENON

Results from XENON1T, set upper limits on DM-matter scattering for multiple models @ 90% confidence level

1. Introduction

- 2. Overview of XENON & first results
- 3. S2-only analysis for light DM
- 4. <u>My ongoing analysis</u>
- 5. Summary and perspectives

Ongoing analysis on general XENONnT

S2 width cut \Rightarrow reject the events with nonphysical drift time

- General: diffusion model width $\propto \sqrt{D^* t/v^2}$ (diffusion constant, drift time, drift velocity)
- S2-only scale: first principles

26 October, 2023

Search for WIMPs and light Dark Matter with XENONnT experiment

21/25

Yongyu PAN

XENON

Ongoing analysis on general XENONnT

Ongoing analysis on S2-only

2. Peak classification algorithm

XENON1T: "Primary S2s" and "delayed electrons"

⇒ identify more categories such as "fake S2", "photoionization"

⇒ correctly pair primary S2s with their delayed electrons peaks and to register other peaks

1. Introduction

- 2. Overview of XENON & first results
- 3. S2-only analysis for light DM
- 4. My ongoing analysis
- 5. <u>Summary and perspectives</u>

Summary & perspectives

XENON

In conclusion:

- First WIMP search with SR0 data (exposure = 1.1 tonne·year)
- S2-only analysis opens up the possibility of exploring 'light' dark matter particles
- Reduction of ER background (15.8±1.3) events/(t·y·keV) and greater active xenon mass in XENONnT
- ⇒ more stringent limits on 'light' dark matter set by S2-only analysis

Future works on ongoing analysis:

- Further study on S2 width cut in SR1
- Characterization of different populations classified by new peak classification algorithm in SR1

Thank you for your attention!

Backup - S2 width cut

Definition of S2 width: Time difference between the 0.25 and 0.75-percentile

What affect S2 width: diffusion effect (along z direction, dominent with high amount of e-: >20e-) of electron cloud (dominent with a few e-), drift velocity, z, S2 area

Backup - S2 width cut

Aims to remove gas events, accidentally coincidence events, and generally any event with unphysical drift time.

