The Photo Detection System in DUNE

Journées de Rencontre Jeunes Chercheurs Ariel Cohen 27/10/2023

The DUNE experiment

- 1. The Far Detector of the DUNE experiment will consist of four gigantic, 17-kiloton Liquid Argon modules.
- 2. The first module is a **Single Phase, Horizontal Drift** LArTPC \rightarrow ProtoDUNE-SP: first operation of LArTPC at the kiloton scale.
- 3. The Vertical Drift concept is proposed for the second module.
- 4. There are 3 key science objectives:
 - a. Study of neutrino oscillations: mass hierarchy, CP violation and mixing angles
 - b. Supernova neutrino bursts study
 - c. Beyond standard model physics signatures

LArTPC: Vertical Drift (VD) module

- Charge-readout planes (CRP) (anode) on top and bottom.
- Cathode in the center at -300 kV
- 6,5 m drift distance
- Fiducial mass ~14.7 kt
- PDS on the cathode and walls

Cryostat dimension: 62 m x 15.1 m x 14 m

X-Arapuca

Working principle

PTP → p-Terphenyl SiPM -> Silicon photomultiplier

Dichroic Window

Frame Assembly

Arapuca module

The device makes use of a **dichroic filter** in combination with two wavelength shifters (WLS)

The device makes use of a **dichroic filter** in combination with two **wavelength shifters (WLS)**

Supernova explosion:

Low energy neutrinos of all flavors are emitted

DUNE \rightarrow sensitivity of 10 - few tens of MeV \rightarrow CC interactions produce short electron tracks in LAr

$$\nu_e + {}^{40} Ar \to e^- + {}^{40} K^*$$

Also, deexcitation gammas product of K* allow for a unique way of tagging interactions

SN cross sections

The nue + 40Ar channel has the highest cross section

Directionality

Number of expected interactions as a function of SN distance

- Main objective: SN localization
- Neutrinos arrive before light signal
- Gives astronomers a chance to see the complete SN light curve!

Simulation and reconstruction

Scintillation light simulation

Light yield

The **light yield (LY)** is defined as the amount of PEs obtained per unit of energy (usually MeV) \rightarrow LY = PE/MeV

<LY> expected for DUNE > 20 PEs/MeV

Clustering for position reconstruction

- <u>Objective</u>: generate *flashes* → clusterings of optical hits related in time and space
- With these flashes, we can perform a position reconstruction for the true event
- PDS reconstruction + TPC reconstruction \rightarrow great imaging capabilities

Creating flashes: how does it work?

Presented with xmind

#Flashes

- 4-30 MeV SN nues with a flat spectrum
- <LY> ~ 30 PEs/MeV

- The mean #flashes is ~2.32. Since all the hits come from a single signal event, ideally this value would be ~ 1
- Amount of 0 flashes is ~ 1.6 %

Undetected points

Top volume simulated

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Undetected points

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Undetected points

- 1. Amount of 0 flashes ~1.6%
- 2. Most of the undetected point occur further away from the cathode and the walls

Spatial resolution

Distance from true to reconstructed vertexes

- Resolution for *all* flashes (blue), and the *largest* flash (red).
- Flashes with lower amount of PEs have a worse reconstruction

Signal + background

Background model

Component	Activity (mBq/cm ³)
³⁹ Ar in LAr	1.41
42 Ar and 42 K in LAr	0.128×10^{-3}
⁸⁵ Kr in LAr	0.16
²²² Rn chain in LAr	1.395×10^{-3}
⁴⁰ K in cathode	9.1
²³⁸ U chain in cathode	0.113
⁶⁰ Co in anode	0.361
$^{238}\mathrm{U}$ chain in anode	95
²²² Rn chain in PDS	0.021
External neutrons	7.6×10^{-3}
(rocks, concrete walls, etc)	
Cavern gammas	64

The two bigger points of interest are:

- Low energy, lots of events: mainly Ar39/Ar42 (Ar 39 is generated at a rate of 1/Ls, which with 17 kt of LAr would produce ~ 10^{10} particles of 2 MeV each.
- High energy, fewer events: mainly neutrons, which capture producing a ~6.1 MeV gamma shower.

Signal + background simulation

<u>Signal</u>

- SN nue
- 5-30 MeV energy spectrum
- Entire simulation extends through +- 4 ms (determined by the electron drift time), with the signal is located at **T=0**.

Background

 Background extends throughout the *entire* detector, and also throughout the *entire* time window **T** = +- 4 ms.

Resolution comparison

Background \rightarrow more light across the detector and throughout the entire time window (+- 4 ms considering TPC drift) \rightarrow more flashes

For example, looking at the spatial resolution:

#PEs vs time, near X-Arapuca

#PEs vs time, center volume

30 MeV nue signal only

30 MeV nue signal plus background

What is the plan?

- <u>Objective</u>: explore clustering to maximise number of photons from the neutrino signal
- Explore discrimination capability as a function of spatial position

Conclusions

- Clustering algorithm shows good performance for a signal only simulation, with a spatial resolution of ~1.2m when considering the largest flash
- Background induces some significant alteration in the clustering process due to the high amount of extra PEs generated
- Obtain a set of parameters for signal identification and background discrimination
- El sadness

Backup slides

Time Projection Chamber (TPC)

Neutrinos

Neutrinos \rightarrow elementary particles in the standard model

- Leptons \rightarrow weak interaction
- <u>Three flavors</u>: *electronic (e), muonic (μ)* and *tauonic (τ)*
- Very small cross section
- Mass?

Neutrino oscillations

 U_{e1} U_{e2} U_{e3} ν_e $\begin{array}{cccc} U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{array}$ u_{μ} $\mathcal{V}\mathfrak{I}$ ν_3 PMNS matrix Weak interaction Mass

when your parents ask where all your electron neutrinos went

eigenstates

eigenstates

Neutrino oscillations

when your parents ask where all your electron neutrinos went

$$P(\nu_{\alpha} \to \nu_{\beta}; L) = \delta_{\alpha\beta} - 4 \sum_{j>k} \operatorname{Re}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin^{2}(\frac{\Delta m_{jk}^{2} L}{4E})$$
$$\pm 2 \sum_{j>k} \operatorname{Im}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin^{2}(\frac{\Delta m_{jk}^{2} L}{2E})$$

 $\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \cdot \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$

with L the baseline, and E the neutrino energy

Neutrino oscillations

when your parents ask where all your electron neutrinos went

 $\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \cdot \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$
$$\begin{split} P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) = & \delta_{\alpha\beta} - 4 \sum_{j > k} \operatorname{Re}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin^{2}(\underbrace{\Delta m_{jk}^{2} L}_{4E}) \\ \pm 2 \sum_{j > k} \operatorname{Im}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin^{2}(\underbrace{\Delta m_{jk}^{2} L}_{2E}) \\ \end{split}$$
Mass term with L the baseline, and E the CP violation term 32 neutrino energy

Mass hierarchy

- $m1 < m2 < m3 \rightarrow normal mass$ hierarchy
- m3 < m1 < m2 → *inverted* mass hierarchy

Matter effects

The longer the baseline L, the greater the difference for the normal and inverted hierarchy, for all values of δcp

DUNE \rightarrow wide-band beam (0.5-8 GeV), as opposed to T2K and Nova, which peak at 0.6 and 1.9 GeV respectively.

Longer baseline and wider-band beam \rightarrow measurement of the first peak at higher energies, and second peak, which is more sensitive to δcp

Position reconstruction analyzer module

- Position reconstruction \rightarrow OpFlashFinder algorithm (LarSoft)
- <u>Objective</u>: generate *flashes*, which are clusterings of optical hits related in time and space, aiming towards matching together points that have the same event origin
 - <u>Time window</u>: 2 us
 - <u>Space window:</u> 15m

LArTPC - Scintillation

Waveforms

Nue close to a X-arapuca

Nue in central volume

<u>Left:</u> spb signal for a nue close to an optical channel. Nue \rightarrow (-310, -630, 1950) m, Opch \rightarrow (-326, -627, 1973) m <u>Right:</u> spb signal for a nue in the center of the detector. Nue \rightarrow (0, 0, 1000) m, Opch \rightarrow (-326, -44, 1011) m

- 10 ADC \rightarrow 1 SPE
- 500 ADC baseline \rightarrow account for potential undershoot.
- Waveforms are generated within a 5us acquisition window

Neutron events

Neutron generation has a peak at ~12 MeV nue energy \rightarrow well within our energy range

Neutrons can then be captured and produce a ~6.1 MeV gamma showers

$$n^{0} + {}^{40}Ar \rightarrow {}^{41}Ar + \gamma_{6.1MeV}$$

Flux-averaged differential cross section

Neutron capture time

Entries h1 17410 Entries 3000 Mean 453.6 Std Dev 538 χ^2 / ndf 194.3/98 2500 Constant 8.066 ± 0.011 Slope -0.002201 ± 0.000017 2000 1500 1000 500 0 1000 2000 3000 4000 5000 6000 7000 8000 Neutron capture time (us)

Neutron capture time

Neutron capture time \rightarrow ~454 us

Photons generated via this capture would have a distinct detection time compared to the once generated via nue + LAr interactions

Neutron capture distance

Neutron capture distance \rightarrow 680 cm (6.8m)

If neutron produces gammas due to capture far away from the neutrino source, the algorithm could potentially generate clusters associated to this capture