

Combination of $X \rightarrow HH$ searches in CMS with the RUN2 data

JRJC

Elise Jourd'huy

Supervised by Maxime Gouzevitch

The Higgs boson

The BEH mechanism

The self-coupling constant λ

Fluctuations around
$$\nu$$
 : $\phi = (H + \nu)/\sqrt{2}$

 \succ The number of observed **Higgs boson pairs** events depends on λ .

The Higgs boson pair production was never observed to this day :
≈ 1000 × rarer than a single Higgs production

Higgs boson self-interaction

PHYSIQUE

ET ASTROPHYSIQU

(பீத) Lyon 1

HH spectrum in the SM

The Higgs pair invariant mass is the variable of interest in the BEH potential study.

BEH potential different from the SM \rightarrow **Deformation of** m_{HH}

PHAST PHYSIQUE ET ASTROPHYSIQUE

UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

(UB)

iP 2i

CMS/

Non-resonnant :

Deformation of m_{HH} spectrum

Resonnant :

Resonance in the m_{HH} spectrum

HH spectrum

Non-resonnant :

Deformation of m_{HH} spectrum

and the second second

What I have worked on so far

Resonant : Resonnance in the m_{HH} **spectrum**

Some BSM theories predict the presence of a resonnance X decaying into a Higgs pair

X

For those who like theory

- **Extended Higgs sector** : The SM complex Higgs doublet can be extended with additional singlet or doublet
 - Additional SM-like Higgs boson
 - Depending on the precise theory, it can tackle some of the BIG QUESTIONS (matter-antimatter asymetry, dark matter, naturalness and hierarchy problem ...)

The SM Higgs mechanism is minimal \rightarrow Other models predict additionnal particles

For those who like theory

- **Extended Higgs sector** : The SM complex Higgs doublet can be extended with additional singlet or doublet
 - Additional SM-like Higgs boson
 - Depending on the precise theory, it can tackle some of the BIG QUESTIONS (matter-antimatter asymetry, dark matter, naturalness and hierarchy problem ...)
- Warped Extra Dimensions : postulates the existence of one extra dimension
 - > New particles decaying into HH such as a Spin-0 radion and the spin2 Kaluza-Klein excitation of the Graviton.

For those who like theory

- **Extended Higgs sector** : The SM complex Higgs doublet can be extended with additional singlet or doublet
 - Additional SM-like Higgs boson
 - Depending on the precise theory, it can tackle some of the BIG QUESTIONS (matter-antimatter asymetry, dark matter, naturalness and hierarchy problem ...)
- Warped Extra Dimensions : postulates the existence of one extra dimension
 - New particles decaying into HH such as a Spin-0 radion and the spin2 Kaluza-Klein excitation of the Graviton.
- The Vendée theory : Theory created by Mr. Charrette while visiting the Puy du fou, postulating the existence of a Prefou that could decay into a Higgs pair.
 - > Would solve everything

And what do I do ?

I worked on the **statistical combination** of the $X \rightarrow HH$ searches : bbyy, bbVV (resolved and boosted), bbbb (resolved and boosted), bb $\tau\tau$, multilepton

Combination recipe

• Check the compatibility of input analyses

- ✓ An event can not appear in two different analyses
- Parameters should be correctly correlated among analyses
- Same normalisation
- Perform your combination
- Check the sanity of your combination with statistical tests
 - Impacts and pulls of the parameters
 - Injection tests
 - 🗸 ...

"Compatibility of the analyses"

✓ One event cannot appear in two different analyses

✓ Correlation between parameters :

Profile likelihood ratio test statistic :

$$L(\vec{\alpha}) = \frac{L(\vec{\alpha}, \hat{\vec{\theta}}(\vec{\alpha}))}{L(\vec{\alpha}, \hat{\vec{\theta}})}$$
 Nuisance parameters
Parameter of interest (POI)

Systematic uncertainties \Rightarrow Nuisance parameters in the fit : some of them are correlated across analyses

<u>Example</u> : The *luminosity* has an uncertainty, which is fully correlated across analyses. Only **one** nuisance parameter should appear, and not one for each analysis. *The combination counts over 1000 nuisance parameters !*

The combination counts over 1000 huisance parameters

✓ Same normalization for all analysis

" Perform your combination "

M_x (GeV)

The statistical tests are performed for 3 representative X masses : $M_X = 280$, 500, 1000 GeV

They are done to check if our fit worked correctly, that the nuisances parameters are well defined (and well correlated)

Injection test

We need to check if no bias is introduced by our analysis \rightarrow If a signal is injected, we should

ge it back as it is, *not much more, not much less*

If no bias is introduced, we should get a $\mathcal{N}(0,1)$

What is next? –

You can do other statistic tests (Goodness Of Fit tests)

- The work done for $X \to HH$ can be used with $X \to YH$ searches ($X \to SH$ see Maxime's Talk)
- Only the *blinded* combination was done here, so the *unblinding* is still to be done.

Congratulations

You reached the end ot the combination recipe got a **Prefou** ! Now admire the result

Congratulations Oops you failed.

Pre-approval

HH Production at CMS (1)

% restants

5%

HH Production at CMS (2)

Electroweak phase transition

Modèle standard

•Eur.J.Phys. 38 (2017) 6, 065404