The death of B-anomalies
 (and of my no longer possible career in physics)

Yann Monceaux - JRJC - 24/10/2023

The Standard Model : an incomplete theory

Still some unresolved problems : Problem of neutrino masses

What do we do about
the prefou?

Reuniting Quantum theory and Gravity

Electroweak hierarchy problem
Flavor puzzle

Observables anomalies

Unknown nature of Dark Matter

UV Theory and NP search

$$
m_{t}=174 \mathrm{GeV}
$$

Energy

UV Theory and NP search

$$
m_{t}=174 \mathrm{GeV}
$$

UV Theory

UV Theory and NP search

UV Theory

UV Theory and NP search

Semi-leptonic B-decays

$b \rightarrow s l^{+} l^{-}$transitions through Flavor Changing Neutral Current (FCNC)
\rightarrow No contribution at tree-level in SM
\rightarrow CKM suppressed

Sensitive to new physics!

Semi-leptonic B-decays

$b \rightarrow s l^{+} l^{-}$transitions through F Current (FCNC)
\rightarrow No contribution at tree-level in SM
\rightarrow CKM suppressed

Sensitive to n physics!
\rightarrow Hadronic uncertainties
Theoretical complications

B-anomalies

forange: SM predictions
 blue : experimental results

- Branching fractions
- Angular observables
- R-ratios
-Muon g-2

B-anomalies

B-anomalies

Anomalies in 'clean' observables gone:

- $\quad R_{K}$ and $R_{K^{*}}$ (LHCb 2022)
- $\quad \mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)(\mathrm{LHCb} 2021)$

Deviation in angular observables and Branching fractions at low q^{2} still standing (q^{2} : square of invariant mass of the two leptons in the final state)

Motivation: B-anomalies status

Anomalies in 'clean' observables gone :

- $\quad R_{K}$ and $R_{K^{*}}$ (LHCb 2022)
- $\quad \mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)(\mathrm{LHCb} 2021)$

Deviation in angular observables and Branching fractions at low q^{2} still standing (q^{2} : square of invariant mass of the two leptons in the final state)

Theoretically challenging

Current status of B-anomalies

Current status of phenomenologists

Theoretical framework:

$b \longrightarrow s l l$ in the weak effective theory
At the scale $m_{b} \quad H_{e f f}=H_{e f f, s l}+H_{e f f, h a d}$

$\triangleright H_{\text {eff }, \text { had }}=-\mathcal{N} \frac{1}{\alpha_{e m}^{2}}\left(C_{8} O_{8}+C_{8}^{\prime}+O_{8}^{\prime}+\sum_{i=1, \ldots, 6} C_{i} O_{i}\right)+$ h.c $\longleftarrow O_{1}=\left(\bar{s} \gamma_{\mu} P_{L} T_{L}^{a} c\right)\left(\bar{c} \mu^{\mu} P_{L} T^{a} b\right)$

Amplitude of $B \rightarrow K^{(*)} \|$ decays

$$
\mathcal{A}\left(B \rightarrow K^{(*)} l^{+} l^{-}\right)=\mathcal{N}\left\{\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}\left(q^{2}\right)-\frac{L_{V}^{\mu}}{q^{2}}\left[C_{7} \mathcal{F}_{\mu}^{T}\left(q^{2}\right)+\mathcal{H}_{\mu}\left(q^{2}\right)\right]\right\}
$$

$$
\triangleright \text { Local } \quad \mathcal{F}_{\mu}\left(q^{2}\right)=\left\langle\bar{K}^{(*)}(k)\right| O_{7,9,10}^{\text {had }}|\bar{B}(k+q)\rangle
$$

Diagrams by Javier Virto
\triangleright Non-Local $\left.\quad \mathcal{H}_{\mu}\left(q^{2}\right)=i \int d^{4} x e^{i q . x}\left\langle K^{(*)}(k)\right| T\left\{j_{\mu}^{e m}(x), C_{i} O_{i}(0)\right\}\right)|\bar{B}(k+q)\rangle$

Local Form Factors computation:

At high- q^{2} : computed on the lattice
\triangleright At low-q ${ }^{2}$: (mostly) Light-Cone Sum Rule (LCSR)

Local Form Factors computation

At high- q^{2} : computed on the lattice

At low-q² : (mostly) Light-Cone Sum Rule (LCSR)
Challenging systematic uncertainties

Local Form Factors computation

\triangleright At high-q ${ }^{2}$: computed on the lattice
\Rightarrow At low-q ${ }^{2}$: (mostly) Light-Cone Sum Rule (LCSR)
Challenging systematic uncertainties

Procedure for Light-Cone Sum Rules

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

B to vacuum correlation function

Express it in function of the form factors

> Compute it perturbatively on the light-cone $: x^{2} \sim 0$ (expansion in growing twists)

Procedure for Light-Cone Sum Rules

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

B to vacuum correlation function

Express it in function of the form factors

[^0]Match both expression

Procedure for Light-Cone Sum Rules

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{w e a k}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
$+$
Dispersion relation
a F.F
Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{\text {int }}^{\nu}|M(k)\rangle\langle M(k)| J_{\text {weat }}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d \xlongequal[\overline{\rho^{\mu \nu}(s)}]{s-k^{2}}$ $\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) . x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Gamma_{1}^{4}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+\ldots$ $x^{2} \ll 1 / \Lambda_{Q C D}^{2}$ Light-Cone OPE In growing twist (dimension - spin)
Non perturbative input : B-meson LC

What we want
$K^{(F)} \frac{\frac{\left.\mathbf{i}-\overline{q^{2}}\right)}{\mathbf{i}-\underline{x}^{-}}}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}$
What is this?

$$
K^{(F)} \frac{\frac{\left.\mathbf{F}-\overline{q^{2}}\right)}{\overline{\mathbf{1}}-}}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}
$$

Procedure for Light-Cone Sum Rules

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{w e a k}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity relation
$+$
Dispersion relation

HQET
$\left.\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle\langle(k)| J_{\text {meank }}^{\mu} \mid \bar{B}(q}{2}\right)$

What we want

$$
\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) . x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Gamma_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+\ldots
$$

$x^{2} \ll 1 / \Lambda_{Q C D}^{2}$ Light-Cone OPE In growing twist (dimension - spin)
Non perturbative input : B-meson LC
What is this?
What we have ${ }^{\text {; }}$

$$
K^{(F)} \frac{\frac{\bar{F}\left(\underline{q}^{2}\right)}{\mathbf{1}}}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}
$$

$d s \frac{\mathbf{I}^{---\mathbf{I}}(s) \mathbf{I}}{s-k^{2}}=f_{B} m_{B} \int_{0}^{+\infty}$

$$
d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Estimating the density

At leading twist:

Supress higher states of unknow contribution

Semi-Global Quark Hadron

$$
\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s p(s) e^{-s / M^{2}} \approx f_{B} m_{B} \int_{s_{0}}^{+\infty} d I_{1}(s) e^{-s / M^{2}}
$$

Setting the parameters

$$
F\left(q^{2}\right)=\frac{f_{B} m_{B}}{K^{(F)}} \int_{0}^{s_{0}} d s I_{1}(s) e^{-\left(s-m^{2}\right) / M^{2}}
$$

\rightarrow Borel parameter M^{2} : compromise between supression of higher twists, and continuum and excited states contribution

Range of the Borel parameter
E.g. for $B \rightarrow K: M^{2} \in[0.5,1.5] \mathrm{GeV}^{2}$
Δ Duality threshold s0: Independence of $\mathrm{F}\left(\mathrm{q}^{2}\right)$ w.r.t M^{2} :

Daughter Sum Rule: $\sqrt{\frac{d}{d M^{2}}} F\left(q^{2}\right)=0$

Preliminary results:

s_{0} from SVZ sum rules Khodjamirian-Mannel hep-ph/0308297

After working on LCSR for a few weeks

After working on LCSR for a few months

Local Form Factors computation

\triangleright At high-q ${ }^{2}$: computed on the lattice

- At low-q ${ }^{2}$: (mostly) Light-Cone Sum Rule (LCSR)

LCSR soon obsolete?

Amplitude of $B \rightarrow K\left({ }^{*}\right) \|$ decays

$$
\mathcal{A}\left(B \rightarrow K^{(*)} l^{+} l^{-}\right)=\mathcal{N}\left\{\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}\left(q^{2}\right)-\frac{L_{V}^{\mu}}{q^{2}}\left[C_{7} \mathcal{F}_{\mu}^{T}\left(q^{2}\right)+\mathcal{H}_{\mu}\left(q^{2}\right)\right]\right\}
$$

- Local $\quad \mathcal{F}_{\mu}\left(q^{2}\right)=\left\langle\bar{K}^{(\theta)}(k)\right| O_{T, 9,10}^{\text {had }}|\bar{B}(k+q)\rangle$

Parametrized with local Form Factors

Diagrams by Javier Virto
\square
Only with LCSR

Conclusion

THANK YOU FOR YOU ATTENTION !!!

Remember to go watch Stitch, the live action in 2024!

Backup

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{w e a k}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
$+$
Dispersion relation
a F.F
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{\text {int }}^{\nu}|M(k)\rangle\langle M(k)| J_{\text {went }}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d \stackrel{\rho^{\mu \nu \nu}(s)}{s-k^{2}}$

What we want
What is this?
$K^{(F)} \frac{\frac{\left.\mathbb{i}-\overline{q^{2}}\right)}{\mathbf{i}-}}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}$

$$
K(F) \frac{\stackrel{-}{F}\left(\underline{q}^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}
$$

Density of continuum
and excited states $\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) . x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Gamma_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \bar{B}(v)\rangle+.$. $x^{2} \ll 1 / \Lambda_{Q C D}^{2}$ Light-Cone OPE In growing twist (dimension - spin)
Non perturbative input : B-meson LC
HQET

$$
d s^{\frac{\mathbf{I}}{---\mathbf{\prime}} \frac{\mathbf{l}^{-}}{s-k^{2}}}=f_{B} m_{B} \int_{0}^{+\infty} d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Estimating the density:

At leading twist:

Supress higher states of unknow contribution

Semi-Global Quark Hadron

$$
\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \rho(s) e^{-s / M^{2}} \approx f_{B} m_{B} \int_{s_{0}}^{+\infty} d s I_{1}(s) e^{-s / M^{2}}
$$

Setting the parameters:

$$
F\left(q^{2}\right)=\frac{f_{B} m_{B}}{K^{(F)}} \int_{0}^{s_{0}} d s I_{1}(s) e^{-\left(s-m^{2}\right) / M^{2}}
$$

\rightarrow Borel parameter M^{2} : compromise between supression of higher twists, and continuum and excited states contribution

Range of the Borel parameter
E.g. for $B \rightarrow K: M^{2} \in[0.5,1.5] \mathrm{GeV}^{2}$
Δ Duality threshold s0: Independence of $\mathrm{F}\left(\mathrm{q}^{2}\right)$ w.r.t M^{2} :

Daughter Sum Rule : $\frac{d}{d M^{2}} F\left(q^{2}\right)=0$

R-ratios

R-ratios :

- Mostly free of hadronic uncertainties
- Search for lepton flavor universality violation

Recent update of R_{K} and $R_{K^{*}}$ by LHCb
(2212.09152)

R-ratios

March 2023 LHCb (including part of run 2):

$R\left(D^{*}\right)=0.257 \pm 0.012 \pm 0.014 \pm 0.012$

Angular observables : P’5

Appropriate ratios of angular coefficients
\square designed to cancel most of the dependence on the form factors

Branching fractions:

$\mathrm{C}_{9}-\mathrm{C}_{10}$ Global fit :

SuperIso

[^0]: Compute it perturbatively on the light-cone : $x^{2} \sim 0$ (expansion in growing

