Vector boson scattering in the ATLAS detector

Journées de Rencontre Jeunes Chercheurs – 25/10/23

Mathieu Markovitch

Laboratoire de Physique des 2 Infinis

The standard model...

- The theory describing elementary particles and their interactions
- Well tested experimentally

The standard model...

- The theory describing elementary particles and their interactions
- Well tested experimentally

Mathieu Markovitch JRJC 2023

Some very rare processes

Vector boson scattering (VBS)

• Electroweak production of vector bosons associated with jets: scattering («collision») of vector bosons

 $V_1 V_2 jj \rightarrow V_3 V_4 jj$

- V_i are electroweak gauge bosons (Z, W^{\pm} , photon)
- Reminder: quarks hadronize and form jets (j) in detectors
- High energy needed for such process: need to collide gauge bosons

VBS is very rich

Lots of different gauge couplings can be involved

Study of gauge couplings

• Not all couplings are allowed in the Standard Model (SM)

- Of course charge should be conserved at the vertex
- Furthermore there is no neutral couplings
- Search for deviation from SM in gauge couplings !

VBS and gauge couplings

- VBS (and triboson) processes are the only ones that are sensitive to quartic gauge couplings
- Unique way of probing physics beyond the SM (BSM) affecting these couplings
 - New QGC (e.g. neutral ones)

Anomalous quartic gauge couplings (aQGC)

- Alteration of couplings existing in the SM
- Can be studied in the Effective Field Theory (EFT) framework

We haven't seen BSM physics for now

- It does not exist ? No, we know that SM is incomplete
- It is too weakly coupled ?
- It is hidden in SM backgrounds ?

Need to increase statistics and improve theory predictions

It is present at too high energy for the current accelerators ?
EFT studies !

EFT approach

- Expand the SM Lagrangian (mass dimension 4) to higher dimensions
- Effective Lagrangian $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$

Dimension-n Lagrangians

• At a given dimension-n: $\mathcal{L}_n = \sum_i C_i^n Q_i^n$

Wilson coefficients

Dimension-n operators

- In the SM there is no high dimension term, Wilson coefficients are 0
- Operators are uniquely associated to Wilson coefficients and form a complete basis
- Odd-dimension operators violate lepton or baryon number conservation and are usually ignored

Dimension-n operators and aQGC

- Wilson coefficients associated to dimension-6 operators are constrained since dimension-6 can be probed with lots of analysis (different final states)
- Dimension-8 is not well known and can induce aQGC: VBS opportunity !
- Link with experiment ? Need observables from EFT
- For instance dimension-8 gives some amplitude (hence cross-section prediction):

$$\begin{split} \mathcal{A}^2 &= |\mathcal{A}_{SM}|^2 + 2\sum_i \frac{C_i}{\Lambda^4} Re(\mathcal{A}_i^*\mathcal{A}_{SM}) + 2\sum_i \frac{C_i^2}{\Lambda^8} |\mathcal{A}_i|^2 + 2\sum_{i\neq j} \frac{C_i C_j}{\Lambda^8} Re(\mathcal{A}_i^*\mathcal{A}_j) \\ \text{Pure SM} \quad \text{EFT-SM interference (linear)} \quad \text{Pure EFT (quadratic) Interference between EFT operators} \end{split}$$

Eboli model

• Complete classification of dimension-8 operators respecting symmetries

$$\begin{split} \mathcal{O}_{S,0} &= \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{O}_{S,1} &= \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{O}_{S,1} &= \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{O}_{M,2} &= \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\ \mathcal{O}_{M,4} &= \left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} \\ \mathcal{O}_{M,5} &= \left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu} + h.c. \\ \mathcal{O}_{M,7} &= \left[(D_{\mu}\Phi)^{\dagger} \widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi \right] \\ \mathcal{O}_{T,0} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta} \right] , \quad \mathcal{O}_{T,1} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\widehat{W}_{\mu\beta}\widehat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{T,2} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\widehat{W}_{\beta\nu}\widehat{W}^{\mu\alpha} \right] , \quad \mathcal{O}_{T,5} &= \mathrm{Tr} \left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta}B^{\alpha\beta} \\ \mathcal{O}_{T,6} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\nu}\widehat{W}^{\mu\beta} \right] \times B_{\mu\beta}B^{\alpha\nu} , \quad \mathcal{O}_{T,7} &= \mathrm{Tr} \left[\widehat{W}_{\alpha\mu}\widehat{W}^{\mu\beta} \right] \times B_{\beta\nu}B^{\nu\alpha} \\ \mathcal{O}_{T,8} &= B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta} , \quad \mathcal{O}_{T,9} &= B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha} . \end{split}$$

Different vertices impacted

	SM				Not SM				
Operators	WWWW	WWZZ	$WW\gamma\gamma$	$WW\gamma Z$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
FS0, FS1	1	1			1				
FM0, FM1, FM7	1	1	\checkmark	1	1	1	1		
FM2, $FM3$, $FM4$, $FM5$		1	\checkmark	1	1	1	1		
FT0, FT1, FT2	1	1	1	1	1	1	1	\checkmark	1
FT5, FT6, FT7		1	1	1	1	1	1	1	1
FT8, FT9					1	1	✓	\checkmark	1

Unitarity violation

Main problem for VBS aQGC studies

- aQGC violates unitarity (interaction amplitudes give a probability higher than one) at high energy
- Can be prevented by reducing theory phase space: introduction of a cutoff scale (*clipping*) beyond which the Wilson coefficient is set to zero
- Different clipping points can be chosen
- Measured limits should beat limits given by unitarity...

Experimental search for VBS

- Lots of LHC analyses (ATLAS+CMS)
- Different and complementary analysis channels
 - WWjj
 - WZjj
 - (ZZ→4I)jj
 - (*ZZ*→2/2*v*)*jj*
 - уујј
 - Inclusive VVjj
 - ...
- First evidence during run 1 (WWjj) confirmed during run 2

Semileptonic final states

- Inclusive VVjj (V=W,Z) production
- Semileptonic final state: one gauge boson decays hadronically (quarks pair) and the other one decays leptonically (leptons pair)

The ATLAS experiment

We look at the collision/decays products

What we want to measure

• VBS with *W*/*Z* decaying into quarks and leptons

• Can't be separated from other electroweak (non-VBS) productions

 Need to be separated from non-electroweak production and other backgrounds
Multivariate techniques (RNN)

Backgrounds

QCD production

- Diboson (no scattering) + jets
- Z + jets (in particular in 0 and 2 leptons channels)
- W + jets (in particular in 0 and 1 lepton channels)
- Top production (in particular in 1 lepton channel)

Analysis description

- Two VBS tagging jets (jets accompanying the scattering)
 - High energy
 - Opposite hemispheres
- Leptonically decaying boson
 - O-lepton channel: only neutrinos (not directly detected so high missing transverse energy required)
 - 1-lepton channel: one charged lepton (e, μ) and one neutrino (missing transverse energy), b-veto
 - 2-leptons channel: two charged leptons with invariant mass window corresponding to e or μ

Analysis description

VBS Jet 1

- Hadonically decaying boson
 - Resolved regime: the two quarks lead to two small jets (high energy required, no overlap with tagging jets)

Merged regime: in case of high boost, the two quarks lead to one large jet (high energy required)

VBS Jet 2

• Summary of selections: 3 (merged) or 4 (resolved) jets with highest energies + 0 or 1 or 2 charged leptons

Measurements

- Signal regions (based on hadronically decaying boson)
 - Resolved (for each channel)
 - Merged with High Purity (for each channel)
 - Merged with Low Purity (for each channel)
- Control regions
 - V+jets (for each channel: V=W in 1 lepton, V=Z in 2 leptons)
 - Resolved
 - Merged

9 CRs

9 SRs

- Top (only 1 lepton channel: *b*-jet instead of *b*-veto)
- We fit (standard fit: all channels and regions) the signal strength parameter μ ($\sigma_{VBS}^{observed}/\sigma_{VBS}^{SM predicted}$) as Parameter of Interest and consider systematics as Nuisance Parameters

Analysis status

- Unblinding and statistical analysis done
- Semileptonic VBS observed with a significance higher than 5σ
- μ compatible with 1 (SM value)
- Fiducial cross section measurement in progress
- aQGC interpretation
- Publication during the next months

aQGC searches

- Inclusive analysis: all operators of the Eboli model can be constrained
- Dedicated EFT samples added to the data and Monte-Carlo (SM background and VBS signal)
- Unitarization procedure with clipping points at 1.5, 2, 3, 5 TeV + no clipping
- Fitting one operator and one clipping point at one time (SM VBS is now a background)

Operator	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
FS1/Λ ⁴	[-6.79, 6.81]	[-8.08, 8.12]
FM0/Λ ⁴	[-1.07, 1.07]	[-1.11, 1.19]
FT0/Λ ⁴	[-0.17, 0.15]	[-0.12, 0.18]
$FT1/\Lambda^4$	[-0.16, 0.17]	[-0.15, 0.14]

LHC results

Planned combination

- LHC run 2 analyses are going to be finalized (run 3 already started in 2022)
- Lots of different and complementary ATLAS VBS analyses
 - Access to aQGC
 - Opportunity to constrain dimension-8 operators (most studies previously focused on dimension-6 before)
 - VBS is a nice candidate for a combination !
- Different vertices, hence operators, involved
- Lots of combinations already done in ATLAS
- Started the effort (selecting analyses and understanding their methodologies and differences)

Future of the combination

- Involved analyses (full run 2)
 - Semileptonic VV
 - *WW*
 - ZZ (4/ and 2/2v)
 - *WZ*
 - Wy
 - *Zy*
 - *WWW*
 - Wyy
- Need to harmonize things
- Very promising, but challenges are expected...

VBS

Triboson production

Conclusion

- VBS processes probe the most fundamental structure of electroweak interactions
- They are very rare and provide high sensitivity to BSM physics affecting gauge and Higgs couplings
- This can be studied in the framework of EFT through anomalous gauge couplings
- EFT constrains BSM physics in a model independent way
- Despite challenges, VBS analyses are very promising candidates for an EFT combination
- The semileptonic final states analysis which will be part of the combination allows to study a lots of couplings

THANK YOU !