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Jets Physics

* Jets represent the shower produced by the hadronisation of a quark or
gluon and is usually characterised by 4-vector: (p, E)

* |ts exact definition depends on the jet algorithm (often anti-KT algorithm?)

proton

\/

proton

Parton jet

Particle jet Track jet

Calorimeter jet

(figure from “Jet Inputs and MC Calibration”, Dilia Maria Portillo, ATLAS collaboration, 2023)

1(“The anti-kt jet clustering algorithm”, Cacciari et al., 2008) Laura Boggia / JRIC / 23rd of Oct 2023 3



https://indico.cern.ch/event/1268247/contributions/5464275/attachments/2708023/4701776/HCW%202023%20Jet%20Inputs%20and%20Calibration%20Dilia.pdf
https://dx.doi.org/10.1088/1126-6708/2008/04/063

o . simulation
Jet Calibration !

. Exp. data
experiment reco

* Jetis an exp. observable defined by anti-kT algorithm'
® Consist of shower of fundamental particles
® Characterised by 4-vector: (p, E)

®* (alibration is essential because detector reacts differently to different
kinds lof particles (EM vs hadronic) - energy deposits differ depending on
particle

* Truth jets:

® “Hadron-level (‘truth’) jets are formed from detector-stable simulated particles..."?
® (Clustered using anti-kt jet algorithm Jet 2

® Reco jets:

® "Detector-level (reco) jets are formed from topologically connected, noise-
suppressed calorimeter cellclusters at the electromagnetic scale using [...] the
anti-kt jet algorithm...”?

Dijet event

' (“The anti-kt jet clustering algorithm”, Cacciari et al., 2008)
2 (“Generalized Numerical Inversion: A Neural Network Approach to Jet Calibration”, ATLAS, 2018)  aura Boggia /JRIC/23rd of 0ct 2023 4



Jet Calibration in ATLAS

Calibration Steps

* On-going studies to replace
current multi-step calibration
scheme by ML model’

® Currentresearch: try to merge
Absolute MC-based
Calibration (MCJES) and GSC
for faster testing of new
algorithms

® Currently done in MonteCarlo
(MC) simulations only

* My task: optimise jet energy
resolution (JER) including
information from exp. data
(in addition to MC)

1(“New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)

Reconstructed Jets Jet finding applied to tracking-/calorimeter-based inputs
L’ eI RG]0 B Applied as a function of event pile-up py density and jet area
L; Residual (1D) Pile-up . . . ,
Removes residual pile-up dependance, as a function of 4 an Npy, (1D for Pre-Recommendations)

|_> Absolute MC-based Corrects jet 4-momentum to the particle-level energy scale. Energy and direction
Calibration are calibrated

Global Sequential
Correction

Reduces flavour dependance and energy leakage effects using calorimeter,
track, and muon-segment variables

Residual in situ
Calibration

Residual calibration applied exclusively to data to correct for
data/MC difference

Jets measured at EM scale, now at particle-
level scale

HCW slides, Gediminas Glemza, 2022
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https://indico.cern.ch/event/1167019/sessions/450121/attachments/2499311/4292826/HCW22_GediminasGlemza_smallRJetR22MCCalib.pdf
http://arxiv.org/abs/2303.17312

"“Machine learning is the science of getting computers

M th i ne Leq 'n i ng to act without being explicitly programmed.”

(Andrew Ng, Stanford University)

* Deep learning describes Rjart of ML focusing on
(deep) Neural Networks (NN)

Deep neural network
Input layer Multiple hidden layers Output layer

* Can be used for learning more elaborate
functions

* In general, learning model tries to optimise a loss
function by repeatedly adjusting its own
parameters

* We distinguish between supervised and
unsupervised learning:
® Supervised: we train the model by comparing the

model's predictions to a known ground truth (e.g.
mean-squared error)

® Unsupervised: we don't have any ground truth to base
our training on

Laura Boggia /JRJC / 23rd of Oct 2023
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http://mlclass.stanford.edu/

ML Model for Jet Calibration

® Regression problem

® Outputis a probability distribution: (up,., op,.)

®  Mean corresponds to calibration factor

® Deep sets'
o

1 for jet 4-vector

Model contains permutation invariant layer
(e.g. sum layer) because order of events
doesn't matter

* Supervised learning problem:

®  Compare truth u to reco level u(6), a(6)
) . . . 1 o (.U(H)_.u)z
Likelihood £(8) = ——— exp (— £ 1 = )
®  1oss(0) =min( —logL(6))
1(u(0) —w)?
= min [= + log a(0) + const. ]

8 2 02(0)

Constituents

Constructed using 2 NN, 1 for jet constituents,

Constituents

$(x;) /

- P~

B (%))

RNﬂW

Jet Inputs

Z

RN

"Machine Learning the MC JES”, K. Greif, C} Pollard, J. Roloff

Jet Inputs
(reco)

True Jets

A 4

Outputs:
calibration factor

(Px) Py» Pz PT)

(px; py; pr, N, E)

true ,true

pr yPr

true rtrue
,ETTHE)

(Hpy l0g(ap,))

)

)

(2,)

T (“Deep sets”, Zaheer et al., 2018),

(“Energy Flow Networks: Deep Sets for Particle Jets”. Komiske et al., 2019)

Laura Boggia / JRIC / 23rd of Oct 2023 7


https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165

Jet Constituents Jet Inputs (reco) True Jets Jet 1
: (Px, Py P2 PT) @2 2D, E) 7™, py e, pive
Dijet Events et e
(80,4) 6 5) d
* Each collision event can register seveéral jets TSI
* Focus on events with two jetsA7e. dijet events Jet event
* Define dijet asymmetry’: £ [amlas TN
S TP (s=13TeV, 44 1™, dijets
ref _prob ref prob < - Anti-k, R = 0.4 (PFlow+JES) ]
o g =Pr “Pr with p&v9 — Pr +Pr sl - 80 = p™?[GeV] < 110 —
PP Pr 2 / 02 <[sf2[ <07 |
2r B
where ref and probe are randomly assigned to the two  _Reconsinucted :
leading jets of every dijet event "L partcle-level E
- (Pythia8) .
* Because of momentum conservation, this should be ¥ E
0 in perfect case (i.e. N0 Noise, reconstruction error)  ost =
° . . . . B “__:::_*': :—t"n._ i
For experimental data, we observe distribution O L g e
around O where standard deviation (std) depends Diet p, asymmetry
on our reconstructed jet resolution (et energy scale and resolution measured in

ATLAS detector”, ATLAS collaboration, 2021)

Laura Boggia / JRIC / 23rd of Oct 2023 8


http://arxiv.org/abs/2007.02645
http://arxiv.org/abs/2007.02645
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Jet Energy Resolution (JER)

* Jet energy resolution (JER) is related to std of dijet asymmetry (after

subtracting the smearing from physics effects, present at hadron level):’

* (0452 = (67£°)? — (672, in central part of detector

* Relative JER can be estimated from g 2¢¢:

() R | t J E R JPT Jc%et J;leco reco
elative : = = ~ 0
Pr \/7 \/E A

®* NN-based correction shouldn't impact truth, so it's sufficient to directly use a#¢°

* Completely independent of true labels = useful for exp. Data

* Update loss function:
®* loss(@) — loss(0) + f+a,'(0)

* ML model simultaneously minimises the JER measured in-situ and the original loss

* Nolonger fully dependent on truth level, ML model is only partially supervised

1 (“Jet energy scale and resolution measured in proton-proton collisions at /s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)  Laura Boggia /JRIC / 23rd of Oct 2023

9


http://arxiv.org/abs/2007.02645

Testing set: reco jets

Dijet asymmetry for 1000.0 < pr,ayy < 2600.0

. T
ATL/ B Asymmetry
e S u S W I — 4.04  Antikt T Gaussian Fit of histogram with u= — 0.00C‘ o=0.099 >

0.2 < ,~~732% quantile, y= — 0.06
3.5 === 68% quantile, y=0.06
ATLAS Simulation JER
3.0 ; i i
Work in Progress estimation

2.5 1

* Asymmetry factor f is fixed to O

* ML model doesn't improve/has little effect on JER
* JERof reco jets (at pileup level). ~9.9 %

* JER of regressed jets (i.e. after applying calibration

. C o 0 asymmetry
factors predicted by ML model): ~ 10.7 % Testing set: regressed jets

* Can JER be improved by adding asymmetry term in Diet asymmetry for 1000.0% prg <3000,

| 1 4.0 A ATLAS N Asymmetry
| OSS fu n Ctl O n, | e f i O? Antikt4E 7, Gaussian Fit of histogram with u= 0.0(4, o=0.107 >
- o, i [
1,020 4 ATLAS Simulation Work in Progress + n-_!gressed 354 02=n< 32047 qua”t!'e' y=—0.06
: Antlfgttpn flowjets JETM2 JZ7 + pileup === 68% quantile, y=0.06 JER
0.2=n< 6?7_+ 3.0 {ATLAS Simulation . i
1.015 4 -+ + Work in Progress estimation
% 1.010 - = +++++ -+ %7
V] + ++
E + -+ . 2.0 1
S 1.005
= + ++ 4+
° e T 151
& 1.000 i
£ -+ “+
3 + T 101
& 0.995
-+ 0.5 -
0.990 -+
0.0 -
0.985 - + -0.20 -0.15 -0.10 -0.05 0.00 0.05 010 0.15 0.20
asymmetry
1600 1800 2000 2200 2400 Laura Boggia /JRIC/23rd of Oct 2023 1y

pt [GeV]



First results: f =0vs f #0

f=0

f#0

* Asymmetry factor f is fixed to O

* Predicted pT values:
* plrue € 1100,2600] GeV
* pr €[1000,3000] GeV

* JER estimation:

* JER of jets before training: ~ 9.9 %

®* JER of regressed jets (i.e. after

applying calibration factors
predicted by ML model). ~ 10.7 %

- First naive implementation failed!

* Asymmetry factor f is varied
between 0 and 10

* Predicted pT values:

pirue € [1100,2600] GeV
pr €[—=1'792"700,394'000] GeV

* JER estimation:

JER of jets before training: ~ 9.9 %

JER of regressed jets (i.e. after

applying calibration factors
predicted by ML model): ~10.2 %

Laura Boggia /JRIC/ 23rd of Oct 2023 11



First Results with f # 0

2.0 4

1.8 A

Predicted / True Mean

=
]
L

1.0

Predicted pT much worse
Predicted JER slightly better:

* JER of jets before training: ~ 9.9 %

* JERof regressed jets (i.e. after applying calibration
factors predicted by ML model). ~10.2 %

=
(=]
1

=
o+
1

ATLAS SimulationWork in Progress -+ + r?gressed
AntiKtaEMPflowjets JETM2 JZ7 + pileup
02=n<07
_I m_-_
1600 1800 2000 2200 2400
pt [GeV]

Problem: \Why do we have
negative calibration factors?

Testing set: reco jets

1 Work in Progress

Dijet asymmetry for 1100.0 < pr, 5y < 2600.0

ATL/ B Asymmetry
Antikt T~ Gaussian Fit of histogram with u= —0.0 o=0.099 )

02 <,~~7 32% quantile, y = — 0.06
JER

—-—- 68% quantile, y =0.06
ATLAS Simulation . .
estimatiol

=

-0.20 -0.15 -0.10 -0.05 0.00
asymmetry

Testing set. regressed

-1792700.0 Ypr, avg

0.05 0.10 0.15

jets

394000.0
S

0.20

Dijet asymmetry fd

-0.20 -0.15 -0.10 -0.05 0.00

ATL B Asymmetr
—0.00Q,0=0.102 >

Antikt T G3 n Fit of histogram with u=
02=/ 2% quantile, y = — 0.06
—-—- 68% quantile, y =0.06 JER
ATLAS Simulation . .
estimation

Work in Progress

0.05

0.10 0.15 0.20

asymmetry

Laura Boggia / JRIC / 23rd of Oct 2023
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\.
Q" GSC variables

W h CI T,S n eXT Energy fractions,

tracking, detector

eta, muon
segments, pileup
: , : : etc.
* Naive approach doesn't work immediately (20,)
* |t seems the two loss terms
contradict/work against each other Jernpus .
]
® Add softplus layer to restrict outputs of NN to 5 g co- =D — s
positive values’ 5 x, Z p
® |ntroduce penalty term that forbids Xert o . [

"Machine Learning the MC JES”, K. Greif, C. Ppllard, J. Roloff

unphysical solution
® Standardise truth targets

—l

A 4

Jet Jet Inputs True Jets Outputs:
. . Constituents (reco) calibration factor
* Use GSC variables? (which are known to
. . - . (Px» Py» Pz PT) (Pxr Py, P11, E) "y pr ) (Mg 108(0p,))
improve JER) in addition to jet 4-vector as T
Jet inputs (80,4) 5) 5) @)

1(“tf.math.softplus”, TensorFlow, September 2022),
2(“New technigues for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023) | aura Boggia / JRIC / 23rd of Oct 2023 13



https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
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Testing set: reco jets

Dijet asymmetry for 1100.0 < pr, a9 < 2600.0

ATL/ B Asymmetry

[ ]
More results with f # 0 | B e e ooy
0.2 =,~~732% quantile, y= — 0.06

-=-=- 68% quantile, y =0.06
JER

ATLAS Simulation . .
1 Work in Progress estimatio

* New variables added
* Softplus layer applied

* Predicted / True ratio pf pT is getting closer to 1 but JER
IS worse

N
. -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
®* JERofreco jets: ~9.9 % asymmetry
* JER of regressed jets (i.e. after applying calibration Testing set: regressed ja
factors predicted by ML model): ~12.7 % Dijet asymmetry K 900.0 < p )
B Asymmetr
Los TLAS Simulation Work in Progress I n?lgressed 351 fn.’t-{r(:'__' yA’ q.uaniiilte(,)fyhftf%r.gz with = _0'0<'°=0'127:>
.06 1 iKtaEMPflowets JETM2 27 pileup | 9% Ao ey = ER
02 =n<of7 3.0 68% quantile, y =0.10 J
1.05 ++-|_++ N stimation
2100 4 ++++++ _H_-|- Problem: pT predictions A’
£ | + B ' are still off s
g +
EI.OZ ++ n 1.0
+ + 4+ 0.5
101 - ++++++++ + :
+ + 0.0 -
1.004 - -0.20 -0.15 -0.10 —0.05as &&Oetr 0.05 0.10 0.15 0.20
16‘00 18‘00 20100 22'00 24lOO g ’
pt [GeV]
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Deep Sets Model

* Model contains permutation invariant layer (e.g. sum layer)
* Why do we want permutation invariance for jet physics?

* Order of events doesn't matter, each collision event happens independently

® (Can guarantee infrared and collinear (IRC) safety which is important for
comparing QCD theory predictions to experimental results

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated
arbitrarily well as:

M
O{p1,...,pm}) =F (Z Zz’%(ﬁi)) 7 (1.2)

where z; is the energy (or pr) and p; the angulan\informjation of particle i.

|

Approximate functions F, ®
with neural networks

1 (“Deep sets”, Zaheer et al., 2018),
(“Enerqgy Flow Networks: Deep Sets for Particle Jets“. Komiske et al., 2019)

Laura Boggia /JRIC/ 23rd of Oct 2023 17


http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165

GSC variables
\

ML Model for Jet Calibration ™

/ segments, pileup etc.

(20,)
. Jet Inputs
® Regression problem
9 Input Output
Output is a probability distribution: (uy,., p,) g
Mean corresponds to calibration factor g - u — / -P- — [}—»f(xl,...,xM)
8 X $(x,)
Constructed using 2 NN, 1 for jet constituents, 1 M NxM N
for jet 4-vector e o . "
. . . . "Machine Learning the MC JES”, K. Greif, C} Pollard, J. Roloff
Model contains permutation invariant layer (e.g.
sum layer) because order of events doesn't
matter v
e ¢ iced | : bl _ Jet Jet Inputs True Jets Outputs:
upervised iearning prooiem. Constituents (reco) calibration factor
Compare truth u to reco level u(9), a(6) (Px> Py, Pz, PT) (0, Py, 0, E) | 0, 057, p7 8| (pys 108(0p,))
true true
ikeli R _ w@-w* S ETE)
Likelihood £(6) = mexp( =) )
l0ss(0) = min ( —logL(6)) (80,4) (5,) (5,) (2,)
1 (u(0) — p)?
Bm [E 52(0) + logo(6) + const. | 1 (“Deep sets“ Zaheer et al., 2018),

(“Energy Flow Networks: Deep Sets for Particle Jets”. Komiske et al., 2019)

Laura Boggia /JRIC/ 23rd of Oct 2023 18


https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
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Add GSC variables

Calorimeter JLArO-3+% The Ef,c measured in the Oth-3rd layer of the EM LAr calorimeter
STile0s—2 The Ef,c measured in the Oth-2nd layer of the hadronic tile calorimeter
JHEC.0-3 The Ef,c measured in the Oth-3rd layer of the hadronic end cap
calorimeter
frcaL.0-2 | The Eg,c measured in the Oth-2nd layer of the forward calorimeter
Ny, The minimum number of clusters containing 90% of the jet energy
Jet kinematics | pi> * The jet p after the MCJES calibration
ni3t The detector i
Tracking Wirack F The average pr-weighted transverse distance in the n-¢ plane
between the jet axis and all tracks of pt > 1 GeV ghost-associated
with the jet
Nirack ™ The number of tracks with pt > 1 GeV ghost-associated with the jet
feharged ™ The fraction of the jet pt measured from ghost-associated tracks
Muon segments | Ngeoments™ | The number of muon track segments ghost-associated with the jet
Pile-up u The average number of interactions per bunch crossing
Npy The number of reconstructed primary vertices

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to those that are also used by the
GSC.

1(see table 1 in “New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)  Laura Boggia / JRIC / 23rd of Oct 2023 19



http://arxiv.org/abs/2303.17312

Bayesian Optimisation of Hyperparameters

* Training set:
* JETM2 JZ7
* Initially 3Mio events but after selection cuts (dijet & n) only ca. 677k
* Unflattened (because current resampling seems bad for training)
* Bayesian optimisation of hyperparameters
* 10 trials with 10 different validation folds

Hyperparameter Search Space

Use log(pr) Dropout cluster Dropout jet Learning rate Factor asymmetry
term
[False, True] [0.0,0.1,0.2,0.3,04, ][0.0,0.1,0.2,0.3,0.4, | [0.0001, 0.01] f €10,10]
0.5] 0.5]

Laura Boggia /JRIC/23rd of Oct 2023 5y



Testing set: reco jets

Dijet Asymmetry of JETM2 JZ7  oomesocpao

. e e e ety S

(before Training) e,
JER

3 | ATLAS Simulation

Work in Progress .
n

* Truth dijet asymmetry has non-Gaussian tails estimatio
®* Use Gaussian as a first approximation

* Can be improved by fitting convolution of exponential and
Gaussian function’

=
1

° Goal |S to m|n|m|SQJER 2020 -0.15 -0.10 —o.osasy?r;?noetryo.os 010 015
* (Cannot get better than truth level Testing set: true jets
* True asymmetry is limited by smearing from physics effect e
. . Antikt T Gaussian Fit of histogram with u= —0.00(, o =0.060
¢ After tralnlng: 8 0_25,:: 22223::3:2520—103 g C)
* Apply predicted calibration factors to uncalibrated test .| A simuaton
samples

N
1

* C(Check their pr distribution, dijet asymmetry & estimate the
JER from it

* (Callthem regressed jets’

0_

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

asymmetry
1(“Jet energy scale and resolution measured in proton-proton collisions at \/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021) Laura Boggia /JRIC / 23rd of Oct 2023 21



http://arxiv.org/abs/2007.02645

Jet 1

Input: Selection Criteria

* Central jets (to simplify problem, will be extended)
In| € [0.2,0.7] Jet 3

balance between leading jets
Ap, > 2.7 rad
Pr, < max(25 GeV,0.25 - prayg)

* pT between 800 and 2800 GeV because using JZ7/
* |Later add more JZ slices

1 (“Jet enerqy scale and resolution measured in proton-proton collisions at \/s = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)
Laura Boggia /JRIC / 23rd of Oct 2023 22
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Input: MC Samples ad

Input data Jet Constituents Jet Inputs
(px’ py: Dz, pT) (an py: Pz PT1» E)
new (Px: Py, BT, ), (pr.).
i€{1,2,3} i€{1,2,3}

* Old input samples:

Per event: 1-2 leading jets, no event info

All jets are treated independently

Isolated jets, lots of monojet events

Empty entries are filled with mask value: O
Info about masking will be passed on to NN

* Modify format of input samples:

Keep event info of 3 leading jets

* Empty entries are filled with new mask value: -10k

Jet 1

Jet 2

* Motivation: apply dijet topology cuts on jet components to ensure good pr
balance between leading jets

Laura Boggia /JRIC / 23rd of Oct 2023 23



leading jet

Input: Jet Components

Old MC samples New MC samples

jet_Pileup jet without mask values
<105 P_X Py pz p.T E _pt 1 _px_1 _py_1 _eta_1 _E1
L5 ] 60000 - . . T
~ 40000 | . T ]
1.00 A . . : b 5
075 4 | 1 1 1 20000 - . I l T l ‘ T “
0.50 ~ . e . N 0 - . i

: 100020003000 —2500 0 2500 —2500 0 2500 0 2 2500 5000
0.25 1 8 § b b _pt 2 _px 2 _py_2 _eta 2 E 2
0.00 - - - -

—500 0 500 —-500 0 500 -5000 O 5000 O 500 0 5000

~ 40000 - - . .
© 20000 - 1 1 1
0 2000 —2500 0 2500 —-2500 O 2500 -2 0 2 0 5000
. . . _pt_3 _px_3 _py_3 _eta_3 _E 3
- Note that p; distribution on LHS has been 150000 -
flattened by resampling = 100000
- On RHS no resampling/flattening 500001
0_0 2000 —2_000 0 2000 —2_000 0 _—2.5).02.5 -O 5000

Produced from mc20a, JETM2, JZ7

Laura Boggia / JRIC / 23rd of Oct 2023 24



New MC samples: resampled

jet without mask values

Input: Jet Components
* Events have been resampled to
flatten distribution of log py ?
avg __
Where pT - (pTl + pTZ)/Z —_2500 0 2500 —_2500 0 2500 _—2 0 2 _0 5000
® This approach was chosen because R __ h
logpy 7 is physically significant i _ _ _

[ ] P RO B |_ E I\/l : 0 0 2000 -—10000 1000 —2-000 0 .50.0 2.5 -0 2500
* Resampling assigns some very Before resampling With resampling
large weights to certain events prag o1 2 ein i Prog of 2 eadng s

* Weights differ by several orders of

magnitude

103 4
103 4

102 4
10°

101 4
101

100 4
100 4

6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0
log pr, avg
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