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Overview

• Quick summary of jet calibration
• Introduction to machine learning (ML)
• Initial machine learning model
• Modifications of machine learning model
• Intermediate results
• Outlook
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Jets Physics

• Jets represent the shower produced by the hadronisation of a quark or 
gluon and is usually characterised by 4-vector: (�⃗�, 𝐸)

• Its exact definition depends on the jet algorithm (often anti-kT algorithm1)

Laura Boggia / JRJC / 23rd of Oct 2023

(figure from “Jet Inputs and MC Calibration”, Dilia María Portillo, ATLAS collaboration, 2023)

1 (“The anti-kt jet clustering algorithm”, Cacciari et al., 2008)

https://indico.cern.ch/event/1268247/contributions/5464275/attachments/2708023/4701776/HCW%202023%20Jet%20Inputs%20and%20Calibration%20Dilia.pdf
https://dx.doi.org/10.1088/1126-6708/2008/04/063
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Jet Calibration

• Jet is an exp. observable defined by anti-kT algorithm1

• Consist of shower of fundamental particles
• Characterised by 4-vector: (�⃗�, 𝐸)

• Calibration is essential because detector reacts differently to different 
kinds of particles (EM vs hadronic) à energy deposits differ depending on 
particle

• Truth jets:
• “Hadron-level (‘truth’) jets are formed from detector-stable simulated particles…”2

• Clustered using anti-kt jet algorithm
• Reco jets:
• “Detector-level (‘reco’) jets are formed from topologically connected, noise-

suppressed calorimeter cellclusters at the electromagnetic scale using […] the 
anti-kt jet algorithm…”2

MC reco

Exp. data 
reco

Exp. data 
truth

MC truthsimulation

experiment

1 (“The anti-kt jet clustering algorithm”, Cacciari et al., 2008)
2 (“Generalized Numerical Inversion: A Neural Network Approach to Jet Calibration”, ATLAS, 2018)

Jet 1

Jet 2

Dijet event
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Jet Calibration in ATLAS

• On-going studies to replace 
current multi-step calibration 
scheme by ML model1

• Current research: try to merge 
Absolute MC-based 
Calibration (MCJES) and GSC 
for faster testing of new 
algorithms

• Currently done in MonteCarlo 
(MC) simulations only

• My task: optimise jet energy 
resolution (JER) including 
information from exp. data 
(in addition to MC)
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HCW slides, Gediminas Glemža, 2022

ML

1 (“New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)

https://indico.cern.ch/event/1167019/sessions/450121/attachments/2499311/4292826/HCW22_GediminasGlemza_smallRJetR22MCCalib.pdf
http://arxiv.org/abs/2303.17312
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Machine Learning

• Deep learning describes part of ML focusing on 
(deep) Neural Networks (NN)

• Can be used for learning more elaborate 
functions

• In general, learning model tries to optimise a loss 
function by repeatedly adjusting its own 
parameters

• We distinguish between supervised and 
unsupervised learning: 
• Supervised: we train the model by comparing the 

model’s predictions to a known ground truth (e.g. 
mean-squared error)

• Unsupervised: we don’t have any ground truth to base 
our training on

“Machine learning is the science of getting computers 
to act without being explicitly programmed.” 

(Andrew Ng, Stanford University)

Laura Boggia / JRJC / 23rd of Oct 2023

http://mlclass.stanford.edu/
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”Machine Learning the MC JES”, K. Greif, C. Pollard, J. Roloff

ML Model for Jet Calibration

• Regression problem

• Output is a probability distribution: (𝜇!! , 𝜎!! )

• Mean corresponds to calibration factor

• Deep sets1

• Constructed using 2 NN, 1 for jet constituents, 
1 for jet 4-vector

• Model contains permutation invariant layer 
(e.g. sum layer) because order of events 
doesn’t matter

• Supervised learning problem:

• Compare truth 𝜇 to reco level 𝜇 𝜃 , 𝜎(𝜃)

• Likelihood ℒ(𝜃) = "
#$%"(')

exp − ) ' *) "

#%" '

• loss(θ) = min
'
( − log ℒ 𝜃 )

= min
'
[
1
2
𝜇 𝜃 − 𝜇 #

𝜎# 𝜃 + log 𝜎 𝜃 + const. ]
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Jet 
Constituents

Jet Inputs 
(reco)

True Jets Outputs: 
calibration factor

(𝑝! , 𝑝" , 𝑝# , 𝑝$) (𝑝! , 𝑝" , 𝑝$ , 𝜂, 𝐸) (𝑝!%&'( , 𝑝"%&'( , 𝑝$%&'( ,
𝜂%&'( , 𝐸%&'()

(𝜇)! , log(𝜎)! ))

(80, 4) (5, ) (5, ) (2, )

1 (“Deep sets“, Zaheer et al., 2018),
(“Energy Flow Networks: Deep Sets for Particle Jets“. Komiske et al., 2019) 

https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165
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Dijet Events
• Each collision event can register several jets
• Focus on events with two jets, i.e. dijet events
• Define dijet asymmetry1:

• 𝒜 = !!
"#$"!!

%"&'

!!
()* , with 𝑝#

$%& = !!
"#$' !!

%"&'

(
,  

where ref and probe are randomly assigned to the two 
leading jets of every dijet event

• Because of momentum conservation, this should be 
0 in perfect case (i.e. no noise, reconstruction error)

• For experimental data, we observe distribution 
around 0 where standard deviation (std) depends 
on our reconstructed jet resolution

Laura Boggia / JRJC / 23rd of Oct 2023

~𝜎*

1 (“Jet energy scale and resolution measured in 
proton-proton collisions at 𝑠 = 13 TeV with the 

ATLAS detector”, ATLAS collaboration, 2021)

Δ𝜙/0

Jet 1

Jet 2Jet 3

Jet event

Jet Constituents Jet Inputs (reco) True Jets

(𝑝!, 𝑝", 𝑝#, 𝑝$) (𝑝!, 𝑝", 𝑝$, 𝜂, 𝐸) (𝑝!%&'(, 𝑝"%&'(, 𝑝$%&'(,
𝜂%&'(, 𝐸%&'()

(80, 4) (5, ) (5, )

http://arxiv.org/abs/2007.02645
http://arxiv.org/abs/2007.02645
http://arxiv.org/abs/2007.02645
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Jet Energy Resolution (JER)
• Jet energy resolution (JER) is related to std of dijet asymmetry (after 

subtracting the smearing from physics effects, present at hadron level):1

• (𝜎𝒜,-.)/ = (𝜎𝒜0-12)/ − (𝜎𝒜.03.4)/,   in central part of detector

• Relative JER can be estimated from 𝜎𝒜"#$:1

• Relative JER: 
!+,
",

= !𝒜
./0

#
≅ !𝒜

1/23

#
~ 𝜎𝒜%&'(

• NN-based correction shouldn’t impact truth, so it’s sufficient to directly use 𝜎𝒜%&'(

• Completely independent of true labels à useful for exp. Data
• Update loss function:
• loss(θ) ⟶ loss(θ) + f ∗ 𝜎)′(𝜃)

• ML model simultaneously minimises the JER measured in-situ and the original loss

• No longer fully dependent on truth level, ML model is only partially supervised

Laura Boggia / JRJC / 23rd of Oct 20231 (“Jet energy scale and resolution measured in proton-proton collisions at 𝑠 = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)

http://arxiv.org/abs/2007.02645
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Results with 𝑓 = 0
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• Asymmetry factor 𝑓 is fixed to 0
• ML model doesn’t improve/has little effect on JER
• JER of reco jets (at pileup level): ~ 9.9 %
• JER of regressed jets (i.e. after applying calibration 

factors predicted by ML model): ~ 10.7 %

• Can JER be improved by adding asymmetry term in 
loss function, i.e. 𝑓 ≠ 0?

Testing set: reco jets

Testing set: regressed jets

JER 
estimation

JER 
estimation

Work in Progress

ATLAS Simulation
Work in Progress

ATLAS Simulation
Work in Progress
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First results: 𝑓 = 0 vs 𝑓 ≠ 0

• Asymmetry factor 𝑓 is fixed to 0

• Predicted pT values:
• 𝑝=>?@A ∈ 1100, 2600  GeV
• 𝑝= ∈ 1000, 3000  GeV

• JER estimation:
• JER of jets before training: ~ 9.9 %
• JER of regressed jets (i.e. after 

applying calibration factors 
predicted by ML model): ~ 10.7 %
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• Asymmetry factor 𝑓  is varied 
between 0 and 10

• Predicted pT values:
• 𝑝=>?@A ∈ 1100, 2600  GeV
• 𝑝= ∈ −1′792′700, 394B000  GeV

• JER estimation:
• JER of jets before training: ~	9.9	%
• JER of regressed jets (i.e. after 

applying calibration factors 
predicted by ML model): ~	10.2	%

à First naive implementation failed!

𝑓 = 0 𝑓 ≠ 0
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First Results with 𝑓 ≠ 0
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Problem: Why do we have 
negative calibration factors?

Testing set: reco jets

JER 
estimation

ATLAS Simulation
Work in Progress

Testing set: regressed jets

JER 
estimationATLAS Simulation

Work in Progress

Work in Progress

• Predicted pT much worse
• Predicted JER slightly better:
• JER of jets before training: ~	9.9	%
• JER of regressed jets (i.e. after applying calibration 

factors predicted by ML model): ~	10.2	%
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What’s next

• Naive approach doesn’t work immediately
• It seems the two loss terms 

contradict/work against each other
• Add softplus layer to restrict outputs of NN to 

positive values1

• Introduce penalty term that forbids 
unphysical solution

• Standardise truth targets 

• Use GSC variables2 (which are known to 
improve JER) in addition to jet 4-vector as 
jet inputs

Laura Boggia / JRJC / 23rd of Oct 2023

”Machine Learning the MC JES”, K. Greif, C. Pollard, J. Roloff

Jet 
Constituents

Jet Inputs 
(reco)

True Jets Outputs: 
calibration factor

(𝑝! , 𝑝" , 𝑝# , 𝑝$) (𝑝! , 𝑝" , 𝑝$ , 𝜂, 𝐸) (𝑝!%&'( , 𝑝"%&'( , 𝑝$%&'( ,
𝜂%&'( , 𝐸%&'()

(𝜇)! , log(𝜎)! ))

(80, 4) (5, ) (5, ) (2, )

GSC variables
Energy fractions, 
tracking, detector 

eta, muon 
segments, pileup 

etc.

(20, )

NEW!

1 (“tf.math.softplus”, TensorFlow, September 2022),
2 (“New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)

https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
https://www.tensorflow.org/api_docs/python/tf/math/softplus
http://arxiv.org/abs/2303.17312
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More results with 𝑓 ≠ 0
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• New variables added
• Softplus layer applied
• Predicted / True ratio pf pT is getting closer to 1 but JER 

is worse
• JER of reco jets: ~ 9.9 %
• JER of regressed jets (i.e. after applying calibration 

factors predicted by ML model): ~ 12.7 %

Testing set: reco jets

Testing set: regressed jets

JER 
estimation

JER 
estimation

Problem: pT predictions 
are still off

ATLAS Simulation
Work in Progress

ATLAS Simulation
Work in Progress

Work in Progress
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Deep Sets Model
• Model contains permutation invariant layer (e.g. sum layer)
• Why do we want permutation invariance for jet physics?
• Order of events doesn’t matter, each collision event happens independently
• Can guarantee infrared and collinear (IRC) safety which is important for 

comparing QCD theory predictions to experimental results

Laura Boggia / JRJC / 23rd of Oct 2023

1 (“Deep sets“, Zaheer et al., 2018),
(“Energy Flow Networks: Deep Sets for Particle Jets“. Komiske et al., 2019) 

Approximate functions 𝐹,Φ 
with neural networks

http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165
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”Machine Learning the MC JES”, K. Greif, C. Pollard, J. Roloff

ML Model for Jet Calibration

• Regression problem
Output is a probability distribution: (𝜇!A, 𝜎!A )
Mean corresponds to calibration factor

• Deep sets1
Constructed using 2 NN, 1 for jet constituents, 1 
for jet 4-vector
Model contains permutation invariant layer (e.g. 
sum layer) because order of events doesn’t 
matter

• Supervised learning problem:
Compare truth 𝜇 to reco level 𝜇 𝜃 , 𝜎(𝜃)

Likelihood ℒ(𝜃) = "
#$%B(')

exp − ) ' *) B

#%B '
loss(θ) = min

'
( − log ℒ 𝜃 )

= min
'
[
1
2
𝜇 𝜃 − 𝜇 #

𝜎# 𝜃
+ log 𝜎 𝜃 + const. ]
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Jet 
Constituents

Jet Inputs 
(reco)

True Jets Outputs: 
calibration factor

(𝑝! , 𝑝" , 𝑝# , 𝑝$) (𝑝! , 𝑝" , 𝑝$ , 𝜂, 𝐸) (𝑝!%&'( , 𝑝"%&'( , 𝑝$%&'( ,
𝜂%&'( , 𝐸%&'()

(𝜇)! , log(𝜎)! ))

(80, 4) (5, ) (5, ) (2, )

1 (“Deep sets“, Zaheer et al., 2018),
(“Energy Flow Networks: Deep Sets for Particle Jets“. Komiske et al., 2019) 

GSC variables

Energy fractions, tracking, 
detector eta, muon 

segments, pileup etc.

(20, )

NEW!

https://indico.cern.ch/event/1216301/contributions/5197845/attachments/2577375/4445523/kgreif_ml_workshop%20(2).pdf
http://arxiv.org/abs/1703.06114
http://arxiv.org/abs/1810.05165
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Add GSC variables

Laura Boggia / JRJC / 23rd of Oct 20231 (see table 1 in “New techniques for jet calibration with the ATLAS detector”, ATLAS collaboration, 2023)

http://arxiv.org/abs/2303.17312
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Bayesian Optimisation of Hyperparameters

• Training set:
• JETM2 JZ7
• Initially 3Mio events but after selection cuts (dijet & 𝜂) only ca. 677k
• Unflattened (because current resampling seems bad for training)

• Bayesian optimisation of hyperparameters
• 10 trials with 10 different validation folds

Hyperparameter Search Space

Use log(𝑝$) Dropout cluster Dropout jet Learning rate Factor asymmetry 
term

[False, True] [0.0, 0.1, 0.2, 0.3, 0.4, 
0.5]

[0.0, 0.1, 0.2, 0.3, 0.4, 
0.5]

[0.0001, 0.01] 𝑓 ∈ [0, 10]

Laura Boggia / JRJC / 23rd of Oct 2023
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Dijet Asymmetry of JETM2 JZ7 
(before Training)
• Truth dijet asymmetry has non-Gaussian tails
• Use Gaussian as a first approximation
• Can be improved by fitting convolution of exponential and 

Gaussian function1

• Goal is to minimise JER
• Cannot get better than truth level 
• True asymmetry is limited by smearing from physics effect 

• After training:
• Apply predicted calibration factors to uncalibrated test 

samples
• Check their 𝑝= distribution, dijet asymmetry & estimate the 

JER from it
• Call them ‘regressed jets’

Laura Boggia / JRJC / 23rd of Oct 2023

Testing set: reco jets

Testing set: true jets

JER 
estimation

1 (“Jet energy scale and resolution measured in proton-proton collisions at 𝑠 = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)

ATLAS Simulation
Work in Progress

ATLAS Simulation
Work in Progress

http://arxiv.org/abs/2007.02645
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Input: Selection Criteria

• Central jets (to simplify problem, will be extended)
|𝜂| ∈ [0.2, 0.7]

• Apply dijet topology cuts1 on jet components to ensure good 𝑝2 
balance between leading jets

Δ𝜙/0 > 2.7 rad
𝑝12 < max(25GeV, 0.25 ⋅ 𝑝1,456)

• pT between 800 and 2800 GeV because using JZ7
• Later add more JZ slices

Laura Boggia / JRJC / 23rd of Oct 2023

Δ𝜙/0

Jet 1

Jet 2

Jet 3

1 (“Jet energy scale and resolution measured in proton-proton collisions at 𝑠 = 13 TeV with the ATLAS detector”, ATLAS collaboration, 2021)

http://arxiv.org/abs/2007.02645
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Input: MC Samples

• Old input samples:
• Per event: 1-2 leading jets, no event info 
• All jets are treated independently
• Isolated jets, lots of monojet events
• Empty entries are filled with mask value: 0
• Info about masking will be passed on to NN

• Modify format of input samples: 
• Keep event info of 3 leading jets
• Empty entries are filled with new mask value: -10k 

• Motivation: apply dijet topology cuts on jet components to ensure good 𝑝1 
balance between leading jets

Laura Boggia / JRJC / 23rd of Oct 2023

Input data Jet Constituents Jet Inputs

Δ𝜙/0

Jet 1

Jet 2

Jet 3
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Input: Jet Components

àNote that 𝑝= distribution on LHS has been 
flattened by resampling

àOn RHS no resampling/flattening

Old MC samples New MC samples

Produced from mc20a, JETM2, JZ7
Laura Boggia / JRJC / 23rd of Oct 2023
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Input: Jet Components

Laura Boggia / JRJC / 23rd of Oct 2023

New MC samples: resampled

With resamplingBefore resampling

• Events have been resampled to 
flatten distribution of log 𝑝1

456 
where 𝑝1

456 = (𝑝1; + 𝑝10)/2
• This approach was chosen because 

log 𝑝=
CDE is physically significant

• PROBLEM:
• Resampling assigns some very 

large weights to certain events
• Weights differ by several orders of 

magnitude


