Quantum science & nanomaterials | QMat

Interdisciplinary thematic institutes of the University of Strasbourg & @ & ⊕ Inserm funded under the Excellence Initiative program ()

tau energy scale and the identification scale factor in CMS

Combined fit of the hodronic

Poncet Océane

23/10/2023

Tau leptons

Why are tau leptons interesting?

- Heaviest leptons.
- Only leptons that decay within the detector.
- Their decay products conserve spin information.
- They have the highest branching ratio for the $H \rightarrow ll$ decay.

Thus, tau leptons are used for several analyses involving taus as final states:

- Standard Model (SM) probe:
 - CP nature of $H \rightarrow \tau^+ \tau^-$ decay.
 - Tau polarization in $Z \rightarrow \tau^+ \tau^-$ decay.
- Beyond SM searches:
 - Leptoquarks, SUSY, high mass resonances ...

Tau leptons

- Short lifetime ↔ short decay length ~ 1.5mm (E ~30 GeV) => tau leptons cannot be directly detected, they have to be reconstructed from their decay products.

• Tau decay products:

- BR = 35,2%
- Easier to
 reconstruct

Hadronic decay (au_h):

- BR = 64,8%
- More challenging
- => focus for today's talk

Tau identification and reconstruction in CMS

Particle Flow (PF) **algorithm reconstructs** the charged and neutral hadrons, photons, μ , and e using information from the CMS sub detectors.

"Fake taus"

The HPS algorithm can misidentify some objects as hadronic tau. These objects are referred to as **'fake taus'.** For example:

- Jets constituted of collimated quarks and gluons can be mistaken for hadronic taus.
- Muons especially in the $\tau^- \rightarrow h^- v_{\tau}$ DM.
- Electrons can emit photons and looks like a π^0 decay or can be misidentified as hadron.

A **Neural Network** (DeepTau) is used to reduce the rate of electrons, muons and jets misidentified as τ_h .

23/10/2023

DeepTau discriminator

- DeepTau = neural network algorithm used to classify τ_h candidates as jets, genuine τ_h , electrons or muons.
- One output scores for each candidates. For example for jets :

- DeepTau score close to 1 :
 - real τ_h /fake τ_h ratio is higher.
 - **BUT** worse Data/Simulation agreement.
- To improve real τ_h /fake τ_h ratio, a cut is applied on the DeepTau score. (Working Points)
- To compensate the Data/Simulation disagreement, a correction factor is applied: the identification scale factor.

But other calibration are needed.

Calibration

Calibration = correct the **differences between data and simulation** by applying **correction factors**.

Use "Tag & Prob" method in $Z \rightarrow \tau_{\mu} \tau_{h}$ channel:

- A well identified object is used as the **tag** object (here is the well measured and identified muon)
- The **probe** object is the one to calibrate, here the τ_h .

Calibration

$$m_{vis} = \sqrt{(\sum E_h + E_\mu)^2 - (\sum \overline{p_h} + \overline{p_\mu})^2}$$

 m_{vis} distribution:

- Used to differenciate signal form background.
- Is **sensitive** to the correction factors.
- $m_{vis} \neq m_Z$ because of the neutrinos.
- The correction factors only applied to the **signal region** ($Z \rightarrow \tau_{\mu} \tau_{h}$) \neq background is mainly composed of fake τ_{h} .

Correction factors

Separate fit and combined fit

Previous analysis : The ID SF and the TES were measured separately.

Likelihood : $\mathcal{L}_1(\mathsf{ID} \mathsf{SF}, \mathsf{syst.} uncertainties)$ et $\mathcal{L}_2(\mathsf{TES}, \mathsf{syst.} uncertainties, uncertainty \mathsf{ID} \mathsf{SF})$

New method : Simultaneous fit of the TES and of the ID SF

Likelihood : *L* (ID SF,TES, syst. *uncertainties*

Goal :

 \hookrightarrow Avoid double counting of the uncertainties.

 \hookrightarrow Take in account the possible correlation between the two correction factors.

Measurement of the correction factors for DM regions

The **fit** is first perform by **DM** regions. One ID SF and one TES are defined for each region to take in account the **differents kinematics** and the **effects** related to the **number of particles to reconstruct in the final state.**

Correlation in DM regions

Example : the TES and th ID SF for $\tau^- \rightarrow h^- h^+ h^- \upsilon_{\tau}$ channel

 \Rightarrow Small correlation between the ID SF and the TES defined by DM.

Measurement of the correction factors for DM and $p_{T(au_h)}$ regions

The **fit** is then performed by **DM and** $p_{T(\tau_h)}$ regions. The splitting in function of the τ_h takes in account the different kinematic between events at low $p_{T(\tau_h)}$ and the ones at higher $p_{T(\tau_h)}$.

Correlatation of the two correction factors

 $20 < p_T < 40 \text{ GeV}$ (low p_T regions) CMS UL2018_v10, 59.7 fb⁻¹ (13 TeV) DM0_pt1 post-fit value ^{1.1} ^{1.1} ^{1.1} ^{1.1} ^{1.1} ^{1.1} ^{1.1} S F 0.8 ˈ₫ m_{vis}, DM0_pt1 – MultiDimFit Param_ 0.96 1.02 0.98 1.04 tau energy scale

 \Rightarrow Low correlation between the ID SF and the TES for low p_T regions. $40 < p_T < 200 \text{ GeV}$ (high p_T regions)

⇒ Correlation between the ID SF and the TES is non-negligible for high p_T . ⇒ Necessity of the combined fit.

Summary on the combined fit

- Hadronic tau leptons reconstruction is challenging.
 - Hadronic taus are reconstructed in their different DM.
 - Fake tau rejection improved by using a neural network (DeepTau).
 - The calibration is important step where difference between data and simulation are corrected.
- A new method for the measurements of the two correction factors has been presented. It is a combined fit of the ID SF and the TES.
- For TES and ID SF measurements performed by **DM** :
 - Low correlation between the ID SF and the TES for DM.
- For TES and ID SF measurements performed **by DM and** p_T :
 - Limited to split only in two p_T regions because of the **statistic** of the **simulation**.
 - Non-negligible correlation between the ID SF and the TES at high $p_T \Rightarrow$ necessity of a combined fit.

What's next?

- Tests on Run 3 data.
- The statistic of the Simulation will be increased by adding new samples for Run 2 (stitching) ⇒ Impact on the measurement on the correction factors ?

Thanks for your attention

23/10/2023

Application: example of analysis using the ID SF and the TES

Search for Charge-Parity (CP) violation in Higgs boson decays into taus leptons

- Standard model (SM) prediction : H is even under CP inversion => H sould have CP even interaction with SM particles
- **CP-violation** in the Higgs couplings can be probe via $H \rightarrow \tau \tau$ decay
- Each fermionic interaction can be decomposed into a CP-even and a CP-odd coupling to the Higgs boson :

- **CP sensitive observable** in tau decay is $\Phi_{CP} \propto \alpha^{H_{\tau\tau}}$ the angle between the tau decay planes is accessible through visible decay products.

Incertitudes systématiques

Incertitudes systématiques

 $\begin{array}{l} \mathsf{DY} \ = \mathsf{Drell-Yan} \ \mathsf{MC} \ (\mathsf{ZTT} + \mathsf{ZL} + \mathsf{ZJ}) \\ \mathsf{ZTT} \ = \mathsf{DY}, \ \mathsf{real} \ \tau_{\mathsf{h}} \\ \mathsf{ZL} \ = \mathsf{DY}, \ \ell \rightarrow \tau_{\mathsf{h}} \ \mathsf{fake} \\ \mathsf{ZJ} \ = \mathsf{DY}, \ j \rightarrow \tau_{\mathsf{h}} \ \mathsf{fake} \\ \mathsf{ttbar} \ = \ \mathsf{TTT} \ + \ \mathsf{TTL} \ + \ \mathsf{TTJ} \end{array}$

nuissance parameter	distribution	uncertainty	applied to
luminosity	InN	±2.5%	all, except QCD
muon efficiency	InN	±2%	all, except QCD
tau ID	shape	from recommendation	ZTT, TTT
DY cross section	InN	±2%	DY
ttbar cross section	InN	±6%	ttbar
single top cross section	InN	±5%	single top
diboson cross section	InN	±5%	diboson
W + jets normalization	InN	±8%	WJ
QCD normalization	InN	±10%	QCD
$j \rightarrow \tau_{\rm h}$ fake rate	InN	±15%	ZJ, WJ, QCD, TTJ, STJ
$j \rightarrow \tau_{\rm h}$ fake energy scale	shape	±5% on $j \rightarrow \tau_{\rm h}$ energy	ZJ, W, TTJ
$\ell \rightarrow \tau_{\rm h}$ fake rate	shape	from recommendation	ZL, TTL
$\ell \rightarrow \tau_{\rm h}$ fake energy scale	shape	±2% on $\ell \rightarrow \tau_{\rm h}$ energy	ZL, TTL
$Z p_T$ reweighting	shape	apply weight ±10%	DY
bin-by-bin	shape		all

For X, a real random variable with a continuous distribution, we aim to estimate the parameter θ . We define the function f such that $f(x; \theta)$ represents the probability that X = x (given θ).

The likelihood of θ given the observations $(x_1, \dots x_n)$ from an n-sample independently and identically distributed according to a law $f(X; \theta)$ is defined as the number:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i; \theta)$$

It's like:

- The probability of measuring x_i given θ
- The distribution of θ using the estimator $\hat{\theta}$

The estimator $\hat{\theta}$ maximizes L for a given sample.

NLL in DM and pt regions

Larger fluctuactions in this case. The fit of the NLL profile with a parabolae is needed. This is due to the limitied statistic of the Simulation.

Event selection

Goal: select $Z \rightarrow \tau_{\mu}\tau_{h}$ events with $\mu\tau_{h}$ as final state for the calibration.

۲

- *p_T* >25 GeV,
- |η|<2.4
- |*dxy*| < 0.045 cm
- |*dz*| < 0.2 cm medium ID
- relative isolation $I_{\mu} < 0.15$
- *p_T* >20 GeV
- |η|<2.3
- |*dz*| < 0.2 cm
- DeepTau2018v2p5VSjet: Medium WP
- DeepTau2018v2p5VSmu: Tight WP
- DeepTau2018v2p5VSe: VVLoose WP

Improve the significance $S/\sqrt{S+B}$ and optimization of the fit

- Lepton veto
- Opposite sign $\mu \tau_h$ pair with $\Delta R > 0.5$ and highest μ and τ_h p_T
- metfilter
- cut $m_T(\mu) < 65 \, {\rm GeV}$

23