Search for displaced top quark in the tracker of CMS

Paul Vaucelle

Université de Strasbourg
France
BLOCH Daniel \& ANDRÉA Jérémy \& MEENA Meena

$$
25 / 10 / 2023
$$

Outline

(1) Introduction
(2) Signal
(3) Events selection
(4) Rejection of secondary interactions
(5) Selection of signal tracks
(6) Reconstruction of displaced vertices using jets and tracks from the final state
(7) Conclusion

Compact Muon Solenoid Detector

Schematic view of the tracker of CMS based on the prefou technology

SuperSymmetry

Standard Model particles

Supersymmetric partners

SM particles $=>$ Superpartners + Neutralinos and charginos (mixing of photino, zino, wino and higgsino)

R-parity Violation

$P_{R}=(-1)^{3(B-L)+2 s}$ where B and L are respectively the Baryonic and Leptonic numbers, s being the spin of the particle

$$
\begin{gathered}
P_{R}=+1 \text { for SM particles } \\
P_{R}=-1 \text { for SUSY particles }
\end{gathered}
$$

R-parity Violation

- Non-conservation of the leptonic and/or the baryonic number
- Lightest-SUSY Particle (neutralino) has a lifetime
- Decay of the Lightest-SUSY Particle into SM Particles
- Displaced tracks can appear in the tracker from this decay

Looking for displaced top quarks + prompt leptons

Based on a phenomenological study ${ }^{[1]}$ to look for displaced top quarks, we focus on the RPV process with a Bino-like neutralino production from slepton decay
[1] : J.Andrea, D.Bloch, É.Conte, D.Darej, R.Ducrocq, E.Nibigira, arXiv:2212.06678 (2023)
smuon pair production

Neutralino decay

- $\operatorname{Br}\left(\tilde{\mu} \rightarrow \mu \chi_{1}^{0}\right)=1$
- 2 long-lived neutralinos
- Two prompt muons
- $\lambda_{312}^{\prime \prime}$ RPV Coupling
- displaced top and stop $\rightarrow 6$ to 10 jets
- Trigger on muons

Monte-Carlo samples

~240 Monte-Carlo samples of 10000 events each have been generated, simulated and reconstructed to cover part of the phase space :

$\beta \gamma c \tau(\mathrm{~cm})$	Mass $\tilde{\mu}(\mathrm{GeV})$	Mass $\tilde{\chi}_{1}^{0}(\mathrm{GeV})$	Mass $\tilde{t}(\mathrm{GeV})$	Coupling $\lambda_{312}^{\prime \prime \prime}$
$\mathbf{0 . 1}$ to $\mathbf{1 0 0}$	$\mathbf{2 0 0}$ to $\mathbf{5 0 0}$	$\mathbf{1 8 0}$ to $\mathbf{4 8 0}$	>1000	10^{-3} to 10^{-1}

Table - SUSY particle masses and neutralino mean distance of flight $\beta \gamma c \tau$ and coupling $\lambda_{312}^{\prime \prime}$.

Phase Space

- smuon pair-production has a cross section of the order of few fb
- Lower limit on $m_{\tilde{\mu}}$ due to previous experimental results
- Upper limit for the signal to be observable or to put limits on it

- $\lambda_{312}^{\prime \prime}$ vs $m_{\chi_{1}^{0}}$ for a given $m_{\tilde{\mu}}$
- Constrain our search to the tracker volume (black lines)

Triggers + Muon selections

Focus on $\mu \mu$

Muon selections
Online selection of muons: Triggers : select one or two muons Offline selection of muons : track parameters and kinematic cuts on muons
$\sim 65 \%$ of signal events pass through the triggers + offline selection $\sim 12 \%$ of $t \bar{t} \rightarrow I I+$ jets events pass through the triggers + offline selection Cross-section of $t \bar{t} \rightarrow \mu \mu+$ jets if of the order of 10000 fb \downarrow
Aiming at reducing the background by a factor $\sim 10^{4}-10^{5}$

V^{0} Candidates reconstruction

V^{0} Candidates

(1) $K_{s}^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)$
(2) $\Lambda \rightarrow\left(p \pi^{-}\right)$or $\left(\bar{p} \pi^{+}\right)$
"Displaced" vertices coming from these V^{0} Candidates
Goal : Remove tracks coming from V^{0} Candidates

V^{0} Candidates : K_{s}^{0} et Λ

- Reconstruction of the V^{0} Candidates vertices using pair of tracks
- Specific selection for K_{s}^{0} and \wedge

Impact on Signal and $t \bar{t}$

- ~1.1 V^{0} Candidates are reconstructed per event (both in signal and $t \bar{t}$)
- \rightarrow Tracks from these V^{0} Candidates are removed

V^{0} Candidate reconstruction

$$
K_{s}^{0} \text { Mass } \pm 0.022 \mathrm{GeV}
$$

Private Work cms Simulation

Λ Mass $\pm 0.0060 \mathrm{GeV}$

Private Work cMs Simulation

Secondary Interactions

Goal : Remove tracks from secondary interactions (photon conversions and nuclear interactions) occurring in the material of the tracker

Reconstruction

- Slight modification of the V0 code to consider all kinds of pair of tracks and optimise the search for nuclear interactions and photon conversions
- Matching of the secondary interactions vertices with the material of the tracker is done using an approximate map of the tracker (see next slide)
- Active layers: Layers used for track reconstruction
- Passive layers : Adding Beam pipe, Pixels inner and outer support

Spatial Distribution of Secondary Interactions

Secondary Interactions

Secondary Interactions

Note: We reject the tracks associated to the vertices of the plot on the right

- About 3.5 secondary interactions are matched with the material of the tracker in signal events while...
- 0.5 secondary interaction are matched with the material of the tracker per $t \bar{t}$ evt

Separation of the event into two cones

Goal : Reconstruct one vertex in each hemisphere

- Construct two axes from the jets ($p_{t}>20 \mathrm{GeV}$)
- $1^{\text {st }}$ Hemisphere : Take the jet of highest p_{t} and we associate successively the nearest jets $\left(\Delta R=\sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}<1.5\right)$
- $2^{\text {nd }}$ Hemisphere : jets non-associated with the $1^{\text {st }}$ hemisphere and associated within $\Delta R<1.5$
Note : If a prompt muon belongs to a jet, its 4 -vector is removed from the axis building procedure

Quality of the reconstructed axes

Check the ΔR between the reconstructed axis and the generated neutralino

ΔR between axes and neutralinos has long tail (10% of the reconstructed hemispheres have a $\Delta R>1.5$ with the generated neutralino) \Rightarrow Association criteria have been optimised but a gap is still observed \Rightarrow bad jets reconstruction, tracking efficiency, close neutralinos (both in η and ϕ)

Track pre-selections

kinematic and track parameters cuts

$=>\sim 95 \%$ of the tracks from generated neutralinos are kept
90% of the bkg tracks are removed (from primary vertex or pileup or fake tracks)

After preselection
$<$ nbr of tracks from LLP> ~15 \& <nbr of tracks from bkg> ~17 per signal event
$\sim 94 \%$ of the tracks from $t \bar{t}$ are rejected

Input for a Boosted Decision tree

\rightarrow Distinguish tracks from a neutralino in a signal event and tracks from $t \bar{t}$

Track variables as input to the BDT

- For a given track with a firsthit ($\times 1, y 1, z 1$), we count the number of tracks having their firsthit within 10, 20, 30 up to 40 cm
- Impact parameters : $\left|d_{x y}\right|,\left|d_{z}\right|,\left|\frac{d_{x y}}{\sigma_{x y}}\right|,\left|\frac{d_{z}}{\sigma_{z}}\right|$
- Others : $p_{t}, \eta, \chi^{2} /$ dof, $n_{h i t s}$, within a jet or not
- ΔR between the tracks and the two hemisphere axes

Signal (50 cm) 40k tracks \& Bkg 200k tracks

- ROC Curve (Bkg rejection vs. Signal Efficiency)
- BDT working Points : depends on the level of bkg rejection needed for the search
- Tight : 10^{3} rejection of background \& Loose : reference working point

Vertexing

Goal : Multi-step vertexing using the Adaptive Vertex fitter to reconstruct one vertex in each hemisphere
(1) Using collections of Tight+Loose WP of the tracks
(2) By applying a χ^{2} requirement during the building procedure of the vertex
(3) Mutli-step : using the two working points with different selection criteria and algorithms

Efficiency for Tight+Loose WP

Efficiency : ratio of the number of matched vertices (with gen vertices) with the number of vertices that should be reconstructed
Purity : ratio of matched vertices (with gen vertices) with the number of vertices
having a good $\chi^{2}\left(0<\frac{\chi_{2}}{D o f}<10\right)$

Resolution

Conclusion

Beginning of a new analysis

Search for displaced top-quarks in the tracker of CMS Vertexing :
(1) Current Workflow: Multi-steps Vertexing using the AVF
(2) Rejection of backgrounds by a factor 10^{3} with the Tight WP
Future :
(1) Check for data/simulation agreement with Run2 data
(2) Implement a method to estimate the background from data \Rightarrow need discriminating variables at event and vertex level (ABCD Method)

Thanks a lot!!

Back-up

Back-up

Phase Space

Mean decay length of the neutralino in the lab frame as a function of the neutralino and squark mass, and according to different values of $\lambda_{312}^{\prime \prime}$

Phase Space

$\beta \gamma c \tau$ [cm]

Mean decay length of the neutralino in the lab frame as a function of the neutralino and squark mass for a value of 10^{-3} for $\lambda_{312}^{\prime \prime}$

Generator :

- MADGRAPH AMC@NLO v.2.7.0, at LO QCD
- PDF : NNPDF30 (LHAPDF package)
- Shower Program : PYTHIA 8.306

Background Samples

- /TTJets_DiLept_TuneCP5_13TeV-madgraphMLM-pythia8
- /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
- /ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powhegpythia8
- /ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powhegpythia8
- /DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8
- /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/
- /WWTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/
- /WWTo2L2Nu_MLL_200To600_TuneCP5_13TeV-powheg-pythia8/
- /WWTo2L2Nu_MLL_600To1200_TuneCP5_13TeV-powheg-pythia8/
- /WZTo2Q2L_mllmin4p0_TuneCP5_13TeV-amcatnloFXFX-pythia8/
- /ZZTo2Q2L_mllmin4p0_TuneCP5_13TeV-amcatnloFXFX-pythia8/
- /ttWJetsToLNu_5f_EWK_TuneCP5_13TeV_amcatnlo-pythia8/
- /TTZToLL_5f_TuneCP5_13TeV-madgraphMLM-pythia8/
- /TTToHadronic_TuneCP5CR1_13TeV-powheg-pythia8/
- /TTWW_TuneCP5_13TeV-madgraph-pythia8/

Correlation Matrix between the 15 initial variables for the signal

Correlation Matrix (signal)

Correlation Matrix between the 15 initial variables for the background

Correlation Matrix (background)

track_dRmax	Linear correlation coefficients in \%															$\begin{aligned} & 100 \\ & 80 \end{aligned}$		
		6					\|10		-8	-7	-8	-3		\|-14		+ 45	100	
	4	15			-1	-4	-23	-16	-12	-12	4	2	-49	100	45			
a_track_isinjet	-15	-25		-1	3	8	31	20	14	12	-13	-6	100	-49	-14			
mva_drSig	22	22			3	-2	-6	-5	-4	-3	50	100	-6	2		60		
mva_dzSig	-6	24	3			-8	1	6	6	6	100	50	-13	4	-3	40		
mva_ntrk40	-39	-29			-1	29	60	83	94	100	6	-3	12	-12	-8	20		
mva_ntrk30	-41	-28			-1	29	67	90	100	94	6	-4	14	-12	-7	20		
mva_ntrk20	-40	-28		-1	-1	29	81	100	90	83	6	-5	20	-16	-8	0		
mva_ntrk10	-32	-26				25	100	81	67	60	1	-6	31	-23	-10			
va_track_nhits	-22	-13	-1	1	-6	100	25	29	29	29	-8	-2	8	-4				
a_track_nchi2	2	1	1		100	-6		-1	-1	-1		3	3	-1		-40		
nva_track_eta				100		1		-1					-1					
mva_track_pt			100		1	-1					3							
mva_track_dz	41	100			1	-13	-26	-28	-28	-29	24	22	-25	15	6	-80		
רva_track_dxy	100	41			2	-22\|	-32	-40	-41\|	[-39	-6	22	\|-15		4			

Efficiency vs BDT response

Input Variables

Input variable: mva_track_eta

Search for displaced top quark in the tracker of CMS

Input Variables

Input variable: mva_ntrk20

Input variable: mva_dzsig

Input variable: mva_ntrk30

Input Variables

Input variable: mva_track_dRmax

MVA Output for the 4 samples of Signal

Transverse distribution of Photon Conversion and V^{0} candidates

Comparison of V^{0} candidates : reconstructed and CMSSW collection

Spatial disitrbution of secondary interactions

Note : Identification de la position des layers ainsi que du beam pipe, du support des pixels et du TID grâce aux premiers hits des tracks pour appliquer le veto

Vertexing details

Vertexing details

Reconstruction efficiency

Sample	Events Selec. by Triggers + Offline	Nb of Hemi (2*nb of events selected)	$\begin{aligned} & \text { Vtx } \quad \text { with } \\ & 0<\frac{x^{2}}{D o F}<10 \end{aligned}$	$\Delta d<0.1$ (relative distance between Gen and Reco Vtx $<10 \%)$	Eff	$\begin{aligned} & \text { Eff } \\ & \text { step1 } \end{aligned}$	$\begin{aligned} & <\text { Dist }> \\ & (\mathrm{cm}) \end{aligned}$
10 (cm)	74.5\%	14.9k	13.7k	11.6k	78\%	68\%	9
30 (cm)	78.2\%	15.6k	13.7k	11.8k	76\%	66\%	19
50 (cm)	75\%	14.9k	11k	9k	61\%	52\%	22
70 (cm)	75.3\%	15k	8.9k	7.5k	50\%	41\%	25
ttbar	12\%	15k	118	XXX	0.8\%	0.2\%	42

Step1 : factor ~ 1000 for the reduction of background

Going Forward

Going Forward

- Implement the ABCD Method \Rightarrow need discriminating variables at event level
(1) nbr of tracks
(2) pt of leading and sub-leading leptons
(3) pt of leading and sub-leading jets,
(4) $\Delta \phi$ between leading letpons, leading-jets and between leptons and jets.
- We are also thinking about discriminating variables at the vertex level
(1) Invariant Mass of the hemisphere
(2) Nbr of tracks associated to a vertex
(3) Mean Weight of the tracks associated to a vertex
(4) $\frac{\chi^{2}}{D o F}$ of the vertex
(5) DCA of the tracks w.r.t the associated vertex
(6) Step of reconstruction of the vertex (i.e: Tight WP)

Vertex Selection

- Invariant Mass of the $\mathrm{V} t \mathrm{x}$
- Quantities related to track multiplicity of the vertex
- $\frac{\chi^{2}}{D o F}$ of the vertex
- DCA of the tracks w.r.t the associated vertex
- Step of reconstruction of the vertex (i.e : Tight WP)

Analyses Overlap

Using the preselections on events from other analyses, we check that other analyses do mostly reject our signal

Vertexing

Goal : Multi-step vertexing using the Adaptive Vertex fitter to reconstruct one vertex in each hemisphere

Tracking

In transverse plane

Along beam axis

