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Neutrino oscillations in a nutshell

Credits J. Coelho




Q Neutrino Préfou oscillations in a nutshell




Q Neutrino mass ordering (NMO)
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Q Atmospheric neutrinos production




Q Measuring I mass ordering using matter effects
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Q KM3NeT detector

Neutrino telescope using a large sea water volume as detection volume:

® Neutrino interaction in water produces charged secondary particles
which induce Cherenkov radiation.

® Detector composed of large array of photosensors.

® Designed to have two construction sites with different physics goals but
same technology.

Sjuana aM|-Jonoys

J.Phye. G: Nuel Part. hys. 43 084001 (2016)




Q KM3NeT - ORCA

ORCA

Study v properties, determine the
E¢ Neutrino Mass Ordering (NMO) and
e - ; measure oscillation parameters.
&N

Status

ORCA site currently has 18 working
DUs, expected to have 28 by the end

of the year.
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The work presented here is done for

PMT: Photomultiplier Tube, DOM: Digital Optical Module, DU: Detection Unit (string of DOMs) the deteCtOr Wlth 6 DUS —> ORCAG




Using Deep Neural Networks (DNN) for a
combined energy estimate



Problem and motivation

. . Input 1st-Hidden  kth-Hidden Ouput
Currently the collaboration uses physics layer layer layer layer

based energy reconstructions. I rack £ :

Information about triggered hits are shared

. . |
in all reconstructions. M@

Reconstructions provide auxiliary variables E st

ITrackleng‘ch
(Direction, vertex position, Cherenkov ) e E > O

variables, etc...).

A Neural Network can use all this information

.
to estimate an optimal combination having 140 H, Hy

the true energy as target.




Q DNN energy resolutions

® Energy reconstructions given by the DNN show ® Energies around the oscillation ranges 5-20 GeV
less bias than the standard reconstructions for show improved resolution for the DNN. This
track and shower-like events. energy range is relevant for oscillations analysis.
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Sensitivity to oscillation parameters

® Energy reconstructions given by the DNN show

® Energies around the oscillation ranges 5-20 GeV
less bias than the standard reconstructions for 9 9

. show improved resolution for the DNN. This
track and shower-like events. ) . )
energy range is relevant for oscillations analysis.
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Graph Neural Networks (GNN) in KM3NeT



About Graph Neural Networks

® FEvent of neutrino going through the detector can nodes (hits), information:

\ time, 3d position,

be represented as a graph composed of nodes

3d direction

and edges.

® Graph given to the network as an input fully

edges, information:

(coordinate, feature)

R o central
e 4 ’—> node ~.

encodes the information of the event.
® Already used in KM3NeT for different tasks:

® Signal vs noise classification

e.g. Cup = (X4, X5 = Xy),

iy = @1 25— 24),

Track vs shower topology classification

[ ]
° .
Energy reg ression From: Development of detector calibration and graph neural network-based selection and reconstruction
® Direction regression algorithms for the of oscillati with KM3NeT/ORCA, Daniel Guderian, PhD Thesis
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Inelasticity of a neutrino interaction

Inelasticity is given by the variable called Bjorken y,
defined as the fraction of the lepton’s energy
transferred to the nucleon rest frame:

y=1—E/E = Esp/Em

For neutrinos interacting with matter, the
distribution of Bjérken y is different for v/ and .
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Q Problem and motivation

0.05}

® NMO effects are visible when looking at I/ 0.45F T E
> F —vNo cosh, =-0.65 ]

and 040 == vIO E
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® But the KM3NeT detector cannot distinguish 035 i ;|o E
v from U so far. _ 030 E

> F E

® Bijorken y distributions can help make this 2 025E E
distinction. = F E

o 0.20~ =

® Information of the inelasticity can be 015k E
retrieved from the track and shower - g
0.10- 3

components. ES N, s ]

® A Graph Neural Networks may have enough

power to reconstruct the Bjorken y. 1 N 10
Energy [GeV]



@ Total energy estimation

Upper row: Without quality cut Total energy distributions By distributions
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@ Conclusions

Additional information can be extracted when considering track and a shower component of events.

- GNN for Bjérken y reconstruction
DNN for energy reconstruction

® GNN can reconstruct the energy of the full

® Hits contain additional information.
event.

o . _—
SITGHE 1 7T B B PR 7 ® Bjorken y mostly reconstructed at a fixed

estimation.
value.

® Gainin sensitivity is limited by systematic ® Certain events are correctly reconstructed

uncertainties. ) .
this can be exploited.

Both tasks are expected to improve performance with bigger detector size.
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a U event is composed of track and shower
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Color denotes
Side view deposited charge

Event display from the NO/A experiment. Taken from: https://nusoft.fnal.gov/nova/public/neutrinos/zoomed-notes.png

Reconstruction methods used at the moment do not include information about both components.



Q But how do you predict the Bjorken y?

G K Bjorken y is a continuous value between 0 and 1 which is annoying from the point of view

of a loss funcion. Regression loss functions work with unbounded continuous values.
To try to solve this issue one can ask the network for two output neurons with their
corresponding uncertainties:

Hadronic Shower

® FEnergy of the track

® Energy of the shower

Train on v, and EM charged current (CC) events, this allows to have shower and track in one event. Training
done for events in the 0 — 100GeV range for simplicity to compensate the detector size.




Architecture of the network

l edge features

Linear |
C —
BatchNorm
W
U

features

EdgeConv Block
k =40, C = (64, 64, 64)

EdgeConv Block
k =40, C = (128, 128, 128)

® Nodes are passed through three

EdgeConv Block
k = 40, C = (256, 256, 256)

Global Average Pooling
Fully Connected
265, ReLU
Fully Connected
2
Sigmoid / linear

From: Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the
measurement of oscillation parameters with KM3NeT/ORCA, Daniel Guderian, PhD Thesis

Rel
Linear
BatchNom |
R —
Aol
Linear

BatchNorm

edge convolution blocks.

® Afterwards the output is passed

through a fully connected network.

® The output is subject to an activation

function depending on the task.




Bjorken y distributions
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GNN reconstructs using the average of the Bjérken y distrubution. The events with improved shower

reconstruction have a high Bjérken y.



GNN Reconstructed energy distributions

Energy distributions Uncertainty distributions
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V interaction topologies

Vi, e u é

electromagnetic

shower hadronic

shower

Vv \ V' Ve
VA

N hadronic N hadronic N hadronic N hadronic
shower shower shower shower

(a) (b) (c)

Summary of Deep Inelastic Scattering (DIS) neutrino event topologies in neutrino telescopes: (a) flavour-insensitive NC,
(b) Ve CC, (c) v, CC, (d) v CC.

Taken from: A. Trovato. “Development of reconstruction algorithms for large volume neutrino telescopes and their application to the KM3NeT detector”. PhD thesis. Universita degli Studi di Catania,
Scuola Superiore di Catania, 2010
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KM3NeT objectives

ARCA

Discover/Observe high-energy neutrino sources in the

universe.

From: https://indico.cern.

454016/

ORCA

Study v properties, determine the Neutrino Mass
Ordering (NMO) and measure oscillation parameters.
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From: https://doi.org/10.3389/fspas.2018.00036




Q Using oscillation weights for training: Defining weight

® We want the network to be right specially for events sensitive to oscillation effects.

® Define the weights for training as w = Aw * k + w(Ams, = 2.5e — 3,sin*(f3) = 0.5), where
AW — |W(Am31 = 2.5e — 3, Sin2(623) - 05) — W(Am31 = 2e — 3, Sin2(923) — 06)| and k
is a hyperparameter which controls the importance of the difference in the oscillation weights.

10°
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HPO doing the right thing?

22.5
Models
Short answer, no. 20.0 :
The apparent best model selected is not :| 17.5 :
the one with the best sensitivity possible. § 15.0
So far it is still the best option. 5 .
v 125 .
Phase space of hyperparameters has a § 10.0 .
very complicated shape. :.; '
Longer warm-up for bayesian algorithm 73 o
allows to better explore the phase space. 5.0
0.1 0.2 0.3 0.4

loss



Hyperparameter optimization methodology

Training and validation files

Hyperparameter - L] L] Hyperparameter
combination trial n combination trial 1
. - Select combination with
® Train many models. best loss value
. . . . Make prediction file for selected
® Compute log likelihood ratio for different e‘,zms from the PID cuts
oscillation parameter combinations. Make prediction file for
selected events from the PID
® Select the best in terms of sensitivity. cuts
. - Compute LnL ratio for
® Go to contours and compare with . . . 4 different oscillation

parameter points

JEnergy contours.

Select model with highest
sensitivity

Produce contours



